数学の偏差値40から52の人の勉強法

・数学の偏差値40から52くらい
・受験まで時間があまりないが、欲をいえば偏差値60以上、せめて偏差値55くらいにしたい

もし、あなたがこのように考えているのなら、今からあなたの希望叶える「秘訣」をお教えします。
その秘訣とは、机上の空論ではありません。
かつて講師をしていたとき、つぎのような実績をだして、それを元に書いた秘訣です。

・模試の偏差値で、数学のクラスが「Aクラス」「Bクラス」「Cクラス」の3つに分けられて、わたしはBクラスを担当(偏差値40から52くらいの生徒が中心)
・半年後、Aクラス(偏差値55以上)の平均偏差値をぶち抜く
・もともと数学の素質があった子どもの数学の偏差値は60を超える
※)Aクラスの授業を担当した先生に力量がなかったためではありません。そもそもAクラスを担当していた講師は、わたしも学生のころに教わっていたベテランの教師ですから。

では、どのようにすれば「偏差値40から52くらい」から、欲をいえば偏差値60以上、せめて偏差値55くらいにできるのでしょうか。
その話の前に、簡単に偏差値の算出方法を説明します。

スポンサード リンク


偏差値のイメージ

最初にお断りをいれておきます。
偏差値のイメージを把握してほしいので、話をシンプルに、かつ、かなり大雑把に説明しています。正確ではありませんので、あらかじめご了承ください。

さて、たとえば、つぎの3問ある試験があったとします。

(1)難しい問題(配点10点)
(2)簡単な問題(配点5点)
(3)簡単な問題(配点5点)

大前提として、偏差値50が受験生のなかでちょうど真ん中の成績とイメージしてください。

これがわかれば、(1)を解ける人はかなり少ないため、(1)(2)(3)すべて正解すれば、偏差値60以上になるとイメージできるのではないでしょうか。

(1)は手も足も出ず、(3)はミスしてしまい、正解したのは(2)だけの人は、偏差値50を切るとイメージできるのではないでしょうか。

(2)(3)は正解の人と(1)だけを正解した人は同じ点数です。2人とも偏差値55くらいになるとイメージできるのですが……。
さて、ここで疑問を持った人もいるかもしれません。
受験生のうち成績の真ん中の人ならば、(1)はわからなくとも(2)と(3)は解けると推測できます。だから、(2)(3)が正解だと偏差値50のはずなのに、なぜ偏差値55くらいにまでいくことがあるのかという疑問です。

スポンサード リンク


人は誰しもケアレスミスや凡ミスをするので、そこが狙い目

簡単な試験問題だと受験生全員が満点をとって、平均点は100点になりそうなものですが、実は、受験生の数が多くなればなるほど、平均点は100点よりも下回ってしまいます。
なぜでしょうか。
それは、人はかならず「ケアレスミス」「凡ミス」をする生き物だからです。人数が増えれば増えるほど、確率論で、誰かがケアレスミスや凡ミスをして平均点を引き下げる可能性が増大していくのです。

しかも、試験では、非常に強い緊張を強いられます。
緊張を強いられると、かならずミスしてしまう人もいますし、そういう、あなたもそうではないでしょうか。

また、簡単な試験でも試験範囲がひろければ、「前に習ったのは覚えているけど、どうやって解くんだっけ……」のような凡ミスをしてしまう確率もあがります。

・受験生の人数が多いこと。
・受験では緊張して本来の力を発揮しにくいこと。
・受験の試験範囲が広いため、ミスが生じやすいこと。

以上の3つの理由により、たとえ簡単な試験であったとしても平均100点になることは、滅多にありません。

これで先ほどの疑問の答えがわかったのではないでしょうか。
受験生のうち、成績が真ん中の人は、受験生なら誰でも解ける問題を解く力はあるのですが、試験ではそれが発揮されず、「受験生なら誰でも解ける問題の一部」を間違えてしまうのです。
だから、「受験生なら誰でも解ける問題」をすべて正解できると、平均よりも上、つまり、偏差値55くらいになることがあるのです。

偏差値40から52までの人の勉強法

偏差値55にする方法は、受験生なら誰でも解けるような問題をすべて正解するか、もしくは難問に正解することです。

しかし、難問を解けるようになるためには基礎から応用までしっかりと勉強しないといけないので時間がかかりますし、緊張を強いられる試験会場で、かならず解けるとは限りません。
その一方、受験生なら誰でも解けるようになる問題を確実に解くことは修練すれば難しいことではありません。

というわけで、「偏差値40から52までの人の勉強法」とは、端的にいうと受験生なら誰でも解けるような問題をすべて正解することです。

もっというなら、応用問題を解けるようにするための労力はほぼゼロにしてしまい、「受験生なら解ける問題」を、ミスすることなく確実に解くことに時間をかけて、ひらすら修練するのです。
そのようにすることで、わたしはベテラン教師が担当する「上」のクラスの平均偏差値をぶち抜いたのです。
みなさんも、もし「偏差値40から52くらい。受験まで時間があまりないけど、欲をいえば偏差値60以上、せめて偏差値55くらいにしたい」と思っているのなら、「確実に解く」ことにチカラを入れるといいでしょう。
では、具体的にどうすればいいのでしょうか。

1つ目は「受験生なら誰でも解ける問題」を見極めよう!

中学3年にもなると、「2x=4」であれば、ほとんどの人はミスさえしません。
このような問題「だけ」を確実に解けるようになったところで合格できませんので、「簡単な問題で誰もミスしない」と「ほとんどの人が解けるけどミスする人も多い」の間の「ライン」を知る必要があります。

そのために、入試問題、模試を解くことです。
また、特に模試は何問解けば偏差値はいくらになるのかの目安がわかるので、つぎのようにするといいでしょう。

・「何問解けば偏差値55になるのか」を知る。
・たとえば50問中15問解ければ偏差値55になるのであれば、簡単な問題の順から15問ピックアップする。
・15問目が、先ほど書いた「ライン」です。その難易度の問題を確実に解けるようにする

とはいえ、この勉強法は、中学生にはすこし難しいと思います。
先生、親などが、「どのレベルの問題を確実に解ければいいのか」を見極めたうえで、示してあげる必要があると思います。

しかし、高校生になれば話は別です。
模試や志望大学の過去問を買ってきて、合格ラインの偏差値から逆算して「このレベルの問題は解けるべき」「このレベルの問題は解けないだろう」と自分で逆算するといいでしょう。
そして、そのレベルの問題をミスがなくなるようにすればいいのです。

では、どのようにすればミスがなくなるのでしょうか。
次回に続きます。

「数学を勉強するすべての人へ」のトップページ