一次方程式1
どうも、石崎です。『0からやりなおす中学数学の計算問題』『5つのパターンで9割わかる!中学数学の文章題』(総合科学出版)などの著者です。さて、数学は、所詮、入試でしか役立たないと思っているひとも多いのではないでしょうか。
いえいえ、そんなことはないですよ。もちろんすべてではないですが、数学は案外実生活で役立ちます。数学の勉強をしっかりしておきましょう。具体的には、まずは基本を理解して、つぎに反復練習しましょう。というわけで、今回も、はりきって一次方程式の計算の反復練習をしましょう。
計算問題を繰り返し解いて本当に数学が得意になるのかと考えるひともいるかもしれませんが、がんばって解いてみてください。そのうち、数学が苦手ではなくなっていると気がつくと思いますから。繰り返し分数の計算をしているとつらくなるかもしれませんが、それを乗り越えてくださいね。
<はじめてのひとへ>
・数式の表示は、MathJaxを利用しています。数式を表示させるにはネット接続とJavascriptを「オン」にすることが必要です。
・このページは印刷できます。詳しい方法は、計算問題を印刷する方法をご覧になってください。
・計算のしかたを工夫すれば楽に計算できるケースもあります。計算式はあくまで目安ですので、あらかじめご了承ください。
・計算問題のページには、ほかにも、たくさん計算問題があります。
<出題内容>
・テーマ:一次方程式1(中学数学)
・問題数:10問
・変数の係数は分数と整数。分数の場合、分子は1桁まで、分母は2桁まで
スポンサード リンク
一次方程式1を解こう!(変数の係数は分数と整数)
(1)つぎの方程式を解いてください。
\[9z+\frac{4}{9}z=\frac{5}{52}\]
(2)つぎの方程式を解いてください。
\[5z-5z=\frac{3}{11}\]
(3)つぎの方程式を解いてください。
\[4z-z=6\]
(4)つぎの方程式を解いてください。
\[-\frac{7}{72}z-\frac{5}{93}z-\frac{3}{31}z=3\]
(5)つぎの方程式を解いてください。
\[\frac{3}{11}z+\frac{6}{37}z+5z=\frac{5}{71}\]
(6)つぎの方程式を解いてください。
\[4z+\frac{2}{95}z+\frac{3}{41}z=4\]
(7)つぎの方程式を解いてください。
\[-7z+\frac{8}{29}z=\frac{3}{16}\]
(8)つぎの方程式を解いてください。
\[5z-\frac{3}{77}z+9z=6\]
(9)つぎの方程式を解いてください。
\[-7z-7z=9\]
(10)つぎの方程式を解いてください。
\[9z+\frac{8}{39}z+9z=\frac{6}{65}\]
一次方程式1(計算式)
(1)つぎのようになります(プログラムで機械的に計算式を出しています。もっと楽に計算できることもあります。あくまで目安です)。 解きっぱなしはよくありません。なぜ間違えたのかをしっかり理解しましょう。面倒と感じるひとは多いのですが、こうしないと計算力はつきません。 (1)一次方程式を解くとつぎになります。
\[\frac{9*9+4*1}{1*9}z=\frac{5}{52}\]
さらに計算するとつぎのようになります。\[\frac{85}{9}z=\frac{5}{52}\]
(2)つぎのようになります(プログラムで機械的に計算式を出しています。もっと楽に計算できることもあります。あくまで目安です)。
\[(5-5)z=\frac{3}{11}\]
さらに計算するとつぎのようになります。\[0z=\frac{3}{11}\]
(3)つぎのようになります(プログラムで機械的に計算式を出しています。もっと楽に計算できることもあります。あくまで目安です)。
\[(4-1)z=6\]
さらに計算するとつぎのようになります。\[3z=6\]
(4)つぎのようになります(プログラムで機械的に計算式を出しています。もっと楽に計算できることもあります。あくまで目安です)。
\[\frac{(-3)*93+(-5)*31}{31*93}z+\frac{(-7)}{72}z=3\]
さらに計算するとつぎのようになります。\[\frac{(-434)*72+(-7)*2883}{2883*72}z=3\]
(5)つぎのようになります(プログラムで機械的に計算式を出しています。もっと楽に計算できることもあります。あくまで目安です)。
\[\frac{6*11+3*37}{37*11}z+5z=\frac{5}{71}\]
さらに計算するとつぎのようになります。\[\frac{177*1+5*407}{407*1}z=\frac{5}{71}\]
(6)つぎのようになります(プログラムで機械的に計算式を出しています。もっと楽に計算できることもあります。あくまで目安です)。
\[\frac{3*95+2*41}{41*95}z+4z=4\]
さらに計算するとつぎのようになります。\[\frac{367*1+4*3895}{3895*1}z=4\]
(7)つぎのようになります(プログラムで機械的に計算式を出しています。もっと楽に計算できることもあります。あくまで目安です)。
\[\frac{-(7)*29+8*1}{1*29}z=\frac{3}{16}\]
さらに計算するとつぎのようになります。\[\frac{-195}{29}z=\frac{3}{16}\]
(8)つぎのようになります(プログラムで機械的に計算式を出しています。もっと楽に計算できることもあります。あくまで目安です)。
\[14z+\frac{-3}{77}z=6\]
さらに計算するとつぎのようになります。\[\frac{14*77-3*1}{1 * 77}z=6\]
(9)つぎのようになります(プログラムで機械的に計算式を出しています。もっと楽に計算できることもあります。あくまで目安です)。
\[(-7-7)z=9\]
さらに計算するとつぎのようになります。\[-14z=9\]
(10)つぎのようになります(プログラムで機械的に計算式を出しています。もっと楽に計算できることもあります。あくまで目安です)。
\[18z+\frac{+8}{39}z=\frac{6}{65}\]
さらに計算するとつぎのようになります。\[\frac{18*39+8*1}{1 * 39}z=\frac{6}{65}\]一次方程式1(解答)
ただ、間違いの理由がわかっても、ひとは誰しも同じ間違いを繰り返してしまうものです。そこでつぎに不正解だった問題をもう一度解きましょう。そして、正解するまで、これを繰り返します。一度解いているので正解するにちがいないと思うかもしれませんが、ふたたび不正解になるものですよ。
\[z=\frac{9}{884}\]
(2)一次方程式を解くとつぎになります。
\[\]
(3)一次方程式を解くとつぎになります。
\[z=2\]
(4)一次方程式を解くとつぎになります。
\[z=-\frac{6696}{553}\]
(5)一次方程式を解くとつぎになります。
\[z=\frac{2035}{157052}\]
(6)一次方程式を解くとつぎになります。
\[z=\frac{15580}{15947}\]
(7)一次方程式を解くとつぎになります。
\[z=-\frac{29}{1040}\]
(8)一次方程式を解くとつぎになります。
\[z=\frac{462}{1075}\]
(9)一次方程式を解くとつぎになります。
\[z=-\frac{9}{14}\]
(10)一次方程式を解くとつぎになります。
\[z=\frac{9}{1775}\]