【中学数学】公式4を使って因数分解する問題(共通因数:整数と変数、変数:2) No.48

どうも、『0からやりなおす中学数学の計算問題』(総合科学出版)などの著書がある石崎です。ほかにも、さまざまなジャンルの著書があります。いきなりですが、因数分解は最初に共通項でくくります。
つぎに、どの公式にあてはめればいいのかを考えます。たくさんの問題を解いて慣れればどの公式にあてはめられるのかがわかるようになります。というわけで、今回も、因数分解の演習問題を解きましょう。
因数分解の演習問題を見るだけで頭痛がするかもしれませんが、がんばりましょう。
挫折せず勉強していると、そのうちいいことがありますよ。

<はじめてのひとへ>
・数式の表示は、MathJaxを利用しています。数式を表示させるにはネット接続とJavascriptを「オン」にすることが必要です。
・このページは印刷できます。詳しい方法は、計算問題を印刷する方法をご覧になってください。
・計算のしかたを工夫すれば楽に計算できるケースもあります。計算式はあくまで目安ですので、あらかじめご了承ください。
計算問題のページには、ほかにも、たくさん計算問題があります。

<出題内容>
・対象:中学三年生(中学数学)
・種類:因数分解(公式4を使って因数分解する問題)
・共通因数:整数と変数、変数:2
・問題数:15問
※公式4
\[x^2+(a+b)x+ab=(x+a)(x+b)\]\[x^2+(ay+by)x+aby^2=(x+ay)(x+by)\]

スポンサード リンク


公式4を利用して因数分解する問題

(1)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[2a^2c-6abc-108b^2c\]

(2)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[2x^2z+6xyz-80y^2z\]

(3)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[4a^2c+12abc+8b^2c\]

(4)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[3x^2z-30xyz+63y^2z\]

(5)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[4a^2c+36abc+32b^2c\]

(6)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[4a^2c-20abc+24b^2c\]

(7)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[4x^2z-20xyz-24y^2z\]

(8)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[3a^2c+21abc+30b^2c\]

(9)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[3a^2c-12abc-96b^2c\]

(10)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[2x^2z-4xyz-30y^2z\]

(11)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[3x^2z+9xyz-30y^2z\]

(12)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[4x^2z-4xyz-80y^2z\]

(13)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[3a^2c+6abc-189b^2c\]

(14)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[4x^2z+40xyz+84y^2z\]

(15)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[2a^2c-6abc-56b^2c\]

公式4を利用して因数分解する問題(計算式)

(1)共通因子でくくると、つぎのようになります。

\[2c(a^2-3ab-54b^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[2c[a^2+\{(-9b)+6b\}a+(-9b)×6b]\]
(2)共通因子でくくると、つぎのようになります。

\[2z(x^2+3xy-40y^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[2z[x^2+\{(-5y)+8y\}x+(-5y)×8y]\]
(3)共通因子でくくると、つぎのようになります。

\[4c(a^2+3ab+2b^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[4c\{a^2+(b+2b)a+b×2b\}\]
(4)共通因子でくくると、つぎのようになります。

\[3z(x^2-10xy+21y^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[3z[x^2+\{(-7y)+(-3y)\}x+(-7y)×(-3y)]\]
(5)共通因子でくくると、つぎのようになります。

\[4c(a^2+9ab+8b^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[4c\{a^2+(8b+b)a+8b×b\}\]
(6)共通因子でくくると、つぎのようになります。

\[4c(a^2-5ab+6b^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[4c[a^2+\{(-2b)+(-3b)\}a+(-2b)×(-3b)]\]
(7)共通因子でくくると、つぎのようになります。

\[4z(x^2-5xy-6y^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[4z[x^2+\{y+(-6y)\}x+y×(-6y)]\]
(8)共通因子でくくると、つぎのようになります。

\[3c(a^2+7ab+10b^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[3c\{a^2+(2b+5b)a+2b×5b\}\]
(9)共通因子でくくると、つぎのようになります。

\[3c(a^2-4ab-32b^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[3c[a^2+\{4b+(-8b)\}a+4b×(-8b)]\]
(10)共通因子でくくると、つぎのようになります。

\[2z(x^2-2xy-15y^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[2z[x^2+\{3y+(-5y)\}x+3y×(-5y)]\]
(11)共通因子でくくると、つぎのようになります。

\[3z(x^2+3xy-10y^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[3z[x^2+\{5y+(-2y)\}x+5y×(-2y)]\]
(12)共通因子でくくると、つぎのようになります。

\[4z(x^2-1xy-20y^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[4z[x^2+\{4y+(-5y)\}x+4y×(-5y)]\]
(13)共通因子でくくると、つぎのようになります。

\[3c(a^2+2ab-63b^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[3c[a^2+\{(-7b)+9b\}a+(-7b)×9b]\]
(14)共通因子でくくると、つぎのようになります。

\[4z(x^2+10xy+21y^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[4z\{x^2+(7y+3y)x+7y×3y\}\]
(15)共通因子でくくると、つぎのようになります。

\[2c(a^2-3ab-28b^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[2c[a^2+\{(-7b)+4b\}a+(-7b)×4b]\]

公式4を利用して因数分解する問題(解答)

数学といえばケアレスミスといっても過言ではないほど、ケアレスミスをよく見かけます。実はケアレスミスはシンプルな方法で減らすことができます。どのようにすればいいのでしょうか。
それは、ひたすら問題を解くだけです。解いた問題が多ければ多いほど慣れて緊張しても正確に計算できるようになります。
単純な方法ですが、効果的です。地道でつらい作業ですが、何度も繰り返し問題を解きましょう。

(1)答えはつぎのようになります。

\[2c(a-9b)(a+6b)\]

(2)答えはつぎのようになります。

\[2z(x-5y)(x+8y)\]

(3)答えはつぎのようになります。

\[4c(a+b)(a+2b)\]

(4)答えはつぎのようになります。

\[3z(x-7y)(x-3y)\]

(5)答えはつぎのようになります。

\[4c(a+8b)(a+b)\]

(6)答えはつぎのようになります。

\[4c(a-2b)(a-3b)\]

(7)答えはつぎのようになります。

\[4z(x+y)(x-6y)\]

(8)答えはつぎのようになります。

\[3c(a+2b)(a+5b)\]

(9)答えはつぎのようになります。

\[3c(a+4b)(a-8b)\]

(10)答えはつぎのようになります。

\[2z(x+3y)(x-5y)\]

(11)答えはつぎのようになります。

\[3z(x+5y)(x-2y)\]

(12)答えはつぎのようになります。

\[4z(x+4y)(x-5y)\]

(13)答えはつぎのようになります。

\[3c(a-7b)(a+9b)\]

(14)答えはつぎのようになります。

\[4z(x+7y)(x+3y)\]

(15)答えはつぎのようになります。

\[2c(a-7b)(a+4b)\]

「数学を勉強するすべての人へ」のトップページ