【中学数学】公式4を使って因数分解する問題(共通因数:整数と変数、変数:2) No.6

どうも、『0からやりなおす中学数学の計算問題』(総合科学出版)などの著書がある石崎です。さて、数学は、所詮、入試のためのもので実生活では役立たないと思っているひとも多いのではないでしょうか。
いえいえ、数学は案外役立ちます。数学の勉強をしっかりしておきましょう。具体的には、基本を理解してから同じ問題を繰り返し解くことです。特に計算問題は繰り返し解きましょう。というわけで、はりきって因数分解の演習問題を解きましょう。

<はじめてのひとへ>
・数式の表示は、MathJaxを利用しています。数式を表示させるにはネット接続とJavascriptを「オン」にすることが必要です。
・このページは印刷できます。詳しい方法は、計算問題を印刷する方法をご覧になってください。
・計算のしかたを工夫すれば楽に計算できるケースもあります。計算式はあくまで目安ですので、あらかじめご了承ください。
計算問題のページには、ほかにも、たくさん計算問題があります。

<出題内容>
・対象:中学三年生(中学数学)
・種類:因数分解(公式4を使って因数分解する問題)
・共通因数:整数と変数、変数:2
・問題数:10問
※公式4
\[x^2+(a+b)x+ab=(x+a)(x+b)\]\[x^2+(ay+by)x+aby^2=(x+ay)(x+by)\]

スポンサード リンク


公式4を利用して因数分解する問題

(1)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[2x^2z+4xyz-30y^2z\]

(2)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[2x^2z+8xyz-10y^2z\]

(3)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[4x^2z+56xyz+180y^2z\]

(4)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[4x^2z+4xyz-48y^2z\]

(5)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[4a^2c-12abc-40b^2c\]

(6)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[4a^2c-20abc-144b^2c\]

(7)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[2a^2c-12abc-54b^2c\]

(8)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[3x^2z-24xyz+45y^2z\]

(9)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[3a^2c-24abc+36b^2c\]

(10)因数分解してください。(ヒント)変数2つなのが気になるかもしれませんが、まずは共通因子でくくってください。共通因子は「数字+文字」です。

\[2x^2z+20xyz+32y^2z\]

公式4を利用して因数分解する問題(計算式)

(1)共通因子でくくると、つぎのようになります。

\[2z(x^2+2xy-15y^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[2z[x^2+\{5y+(-3y)\}x+5y×(-3y)]\]
(2)共通因子でくくると、つぎのようになります。

\[2z(x^2+4xy-5y^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[2z[x^2+\{5y+(-y)\}x+5y×(-y)]\]
(3)共通因子でくくると、つぎのようになります。

\[4z(x^2+14xy+45y^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[4z\{x^2+(5y+9y)x+5y×9y\}\]
(4)共通因子でくくると、つぎのようになります。

\[4z(x^2+1xy-12y^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[4z[x^2+\{4y+(-3y)\}x+4y×(-3y)]\]
(5)共通因子でくくると、つぎのようになります。

\[4c(a^2-3ab-10b^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[4c[a^2+\{(-5b)+2b\}a+(-5b)×2b]\]
(6)共通因子でくくると、つぎのようになります。

\[4c(a^2-5ab-36b^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[4c[a^2+\{4b+(-9b)\}a+4b×(-9b)]\]
(7)共通因子でくくると、つぎのようになります。

\[2c(a^2-6ab-27b^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[2c[a^2+\{3b+(-9b)\}a+3b×(-9b)]\]
(8)共通因子でくくると、つぎのようになります。

\[3z(x^2-8xy+15y^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[3z[x^2+\{(-3y)+(-5y)\}x+(-3y)×(-5y)]\]
(9)共通因子でくくると、つぎのようになります。

\[3c(a^2-8ab+12b^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[3c[a^2+\{(-6b)+(-2b)\}a+(-6b)×(-2b)]\]
(10)共通因子でくくると、つぎのようになります。

\[2z(x^2+10xy+16y^2)\]

カッコのなかを公式にあてはめます。変数が2つありますが、公式にあてはめることができます。

\[2z\{x^2+(8y+2y)x+8y×2y\}\]

公式4を利用して因数分解する問題(解答)

ケアレスミスなどの計算ミスはしたくないですね。計算ミスを防ぎましょう。どのようにすれば計算ミスを減らすことができるのでしょうか。
それは、繰り返し計算問題を解くだけです。何度も問題を解くと慣れてたとえ緊張しても正確に計算できるようになります。
単純な方法ですが、効果てきめんです。ケアレスミスをなくすだけで数学の成績はあがるので、何度も繰り返し問題を解きましょう。

(1)答えはつぎのようになります。

\[2z(x+5y)(x-3y)\]

(2)答えはつぎのようになります。

\[2z(x+5y)(x-y)\]

(3)答えはつぎのようになります。

\[4z(x+5y)(x+9y)\]

(4)答えはつぎのようになります。

\[4z(x+4y)(x-3y)\]

(5)答えはつぎのようになります。

\[4c(a-5b)(a+2b)\]

(6)答えはつぎのようになります。

\[4c(a+4b)(a-9b)\]

(7)答えはつぎのようになります。

\[2c(a+3b)(a-9b)\]

(8)答えはつぎのようになります。

\[3z(x-3y)(x-5y)\]

(9)答えはつぎのようになります。

\[3c(a-6b)(a-2b)\]

(10)答えはつぎのようになります。

\[2z(x+8y)(x+2y)\]

「数学を勉強するすべての人へ」のトップページ