【中学数学】置きかえて公式3で因数分解する問題 No.55
『0からやりなおす中学数学の計算問題』(総合科学出版)などの著書がある石崎です。『基本にカエル英語の本』という著書もあります。
さて、因数分解は最初に共通項でくくります。
つぎに、どの公式にあてはめればいいのかを考えます。たくさんの問題を解けばどの公式にあてはめられるのかがわかります。というわけで、今日も、地道に因数分解の演習問題を解きましょう。
因数分解の演習問題は単調でつらいかもしれませんが、がんばりましょう。
くじけず勉強していると、そのうちいいことがありますよ。
<はじめてのひとへ>
・数式の表示は、MathJaxを利用しています。数式を表示させるにはネット接続とJavascriptを「オン」にすることが必要です。
・このページは印刷できます。詳しい方法は、計算問題を印刷する方法をご覧になってください。
・計算のしかたを工夫すれば楽に計算できるケースもあります。計算式はあくまで目安ですので、あらかじめご了承ください。
・計算問題のページには、ほかにも、たくさん計算問題があります。
<出題内容>
・対象:中学三年生(中学数学)
・種類:因数分解(置きかえて因数分解する問題)
・因数分解の方法:公式3で因数分解
・問題数:15問
※公式
\[x^2-y^2=(x+y)(x-y)\]\[x^2+2xy+y^2=(x+y)^2\]\[x^2-2xy+y^2=(x-y)^2\]\[x^2+(a+b)x+ab=(x+a)(x+b)\]\[x^2+(ay+by)x+aby^2=(x+ay)(x+by)\]
スポンサード リンク
置きかえて因数分解する問題
(1)因数分解してください。
\[(a+9)^2-8(a+9)+16\]
(2)因数分解してください。
\[(x-2)^2-16(x-2)+64\]
(3)因数分解してください。
\[(x+7)^2-2(x+7)+1\]
(4)因数分解してください。
\[(x+3)^2-4(x+3)+4\]
(5)因数分解してください。
\[(x-2)^2-16(x-2)+64\]
(6)因数分解してください。
\[(a+4)^2-16(a+4)+64\]
(7)因数分解してください。
\[(x+4)^2-12(x+4)+36\]
(8)因数分解してください。
\[(x-5)^2-10(x-5)+25\]
(9)因数分解してください。
\[(x-5)^2-6(x-5)+9\]
(10)因数分解してください。
\[(a+7)^2-4(a+7)+4\]
(11)因数分解してください。
\[(x+2)^2-14(x+2)+49\]
(12)因数分解してください。
\[(a-1)^2-12(a-1)+36\]
(13)因数分解してください。
\[(x-5)^2-2(x-5)+1\]
(14)因数分解してください。
\[(x-4)^2-10(x-4)+25\]
(15)因数分解してください。
\[(x+7)^2-16(x+7)+64\]
置きかえて因数分解する問題(計算式)
(1)( )を「A」で置きかえます。そして、式の形をすこし変えると、どのように因数分解すればいいのかがわかるのではないでしょうか。
\[A^2-2×A×4+(4)^2\]
つぎのようになります。
\[(A-4)^2\]
Aをもとに戻すとつぎのようになります。
\[(a+9-4)^2\]
なお、式を見て因数分解できるのならば、Aに置きかえる必要はありません。
\[(a+9)^2-2×(a+9)×4+(4)^2\]
(2)( )を「A」で置きかえます。そして、式の形をすこし変えると、どのように因数分解すればいいのかがわかるのではないでしょうか。
\[A^2-2×A×8+(8)^2\]
つぎのようになります。
\[(A-8)^2\]
Aをもとに戻すとつぎのようになります。
\[(x-2-8)^2\]
なお、式を見て因数分解できるのならば、Aに置きかえる必要はありません。
\[(x-2)^2-2×(x-2)×8+(8)^2\]
(3)( )を「A」で置きかえます。そして、式の形をすこし変えると、どのように因数分解すればいいのかがわかるのではないでしょうか。
\[A^2-2×A×1+(1)^2\]
つぎのようになります。
\[(A-1)^2\]
Aをもとに戻すとつぎのようになります。
\[(x+7-1)^2\]
なお、式を見て因数分解できるのならば、Aに置きかえる必要はありません。
\[(x+7)^2-2×(x+7)×1+(1)^2\]
(4)( )を「A」で置きかえます。そして、式の形をすこし変えると、どのように因数分解すればいいのかがわかるのではないでしょうか。
\[A^2-2×A×2+(2)^2\]
つぎのようになります。
\[(A-2)^2\]
Aをもとに戻すとつぎのようになります。
\[(x+3-2)^2\]
なお、式を見て因数分解できるのならば、Aに置きかえる必要はありません。
\[(x+3)^2-2×(x+3)×2+(2)^2\]
(5)( )を「A」で置きかえます。そして、式の形をすこし変えると、どのように因数分解すればいいのかがわかるのではないでしょうか。
\[A^2-2×A×8+(8)^2\]
つぎのようになります。
\[(A-8)^2\]
Aをもとに戻すとつぎのようになります。
\[(x-2-8)^2\]
なお、式を見て因数分解できるのならば、Aに置きかえる必要はありません。
\[(x-2)^2-2×(x-2)×8+(8)^2\]
(6)( )を「A」で置きかえます。そして、式の形をすこし変えると、どのように因数分解すればいいのかがわかるのではないでしょうか。
\[A^2-2×A×8+(8)^2\]
つぎのようになります。
\[(A-8)^2\]
Aをもとに戻すとつぎのようになります。
\[(a+4-8)^2\]
なお、式を見て因数分解できるのならば、Aに置きかえる必要はありません。
\[(a+4)^2-2×(a+4)×8+(8)^2\]
(7)( )を「A」で置きかえます。そして、式の形をすこし変えると、どのように因数分解すればいいのかがわかるのではないでしょうか。
\[A^2-2×A×6+(6)^2\]
つぎのようになります。
\[(A-6)^2\]
Aをもとに戻すとつぎのようになります。
\[(x+4-6)^2\]
なお、式を見て因数分解できるのならば、Aに置きかえる必要はありません。
\[(x+4)^2-2×(x+4)×6+(6)^2\]
(8)( )を「A」で置きかえます。そして、式の形をすこし変えると、どのように因数分解すればいいのかがわかるのではないでしょうか。
\[A^2-2×A×5+(5)^2\]
つぎのようになります。
\[(A-5)^2\]
Aをもとに戻すとつぎのようになります。
\[(x-5-5)^2\]
なお、式を見て因数分解できるのならば、Aに置きかえる必要はありません。
\[(x-5)^2-2×(x-5)×5+(5)^2\]
(9)( )を「A」で置きかえます。そして、式の形をすこし変えると、どのように因数分解すればいいのかがわかるのではないでしょうか。
\[A^2-2×A×3+(3)^2\]
つぎのようになります。
\[(A-3)^2\]
Aをもとに戻すとつぎのようになります。
\[(x-5-3)^2\]
なお、式を見て因数分解できるのならば、Aに置きかえる必要はありません。
\[(x-5)^2-2×(x-5)×3+(3)^2\]
(10)( )を「A」で置きかえます。そして、式の形をすこし変えると、どのように因数分解すればいいのかがわかるのではないでしょうか。
\[A^2-2×A×2+(2)^2\]
つぎのようになります。
\[(A-2)^2\]
Aをもとに戻すとつぎのようになります。
\[(a+7-2)^2\]
なお、式を見て因数分解できるのならば、Aに置きかえる必要はありません。
\[(a+7)^2-2×(a+7)×2+(2)^2\]
(11)( )を「A」で置きかえます。そして、式の形をすこし変えると、どのように因数分解すればいいのかがわかるのではないでしょうか。
\[A^2-2×A×7+(7)^2\]
つぎのようになります。
\[(A-7)^2\]
Aをもとに戻すとつぎのようになります。
\[(x+2-7)^2\]
なお、式を見て因数分解できるのならば、Aに置きかえる必要はありません。
\[(x+2)^2-2×(x+2)×7+(7)^2\]
(12)( )を「A」で置きかえます。そして、式の形をすこし変えると、どのように因数分解すればいいのかがわかるのではないでしょうか。
\[A^2-2×A×6+(6)^2\]
つぎのようになります。
\[(A-6)^2\]
Aをもとに戻すとつぎのようになります。
\[(a-1-6)^2\]
なお、式を見て因数分解できるのならば、Aに置きかえる必要はありません。
\[(a-1)^2-2×(a-1)×6+(6)^2\]
(13)( )を「A」で置きかえます。そして、式の形をすこし変えると、どのように因数分解すればいいのかがわかるのではないでしょうか。
\[A^2-2×A×1+(1)^2\]
つぎのようになります。
\[(A-1)^2\]
Aをもとに戻すとつぎのようになります。
\[(x-5-1)^2\]
なお、式を見て因数分解できるのならば、Aに置きかえる必要はありません。
\[(x-5)^2-2×(x-5)×1+(1)^2\]
(14)( )を「A」で置きかえます。そして、式の形をすこし変えると、どのように因数分解すればいいのかがわかるのではないでしょうか。
\[A^2-2×A×5+(5)^2\]
つぎのようになります。
\[(A-5)^2\]
Aをもとに戻すとつぎのようになります。
\[(x-4-5)^2\]
なお、式を見て因数分解できるのならば、Aに置きかえる必要はありません。
\[(x-4)^2-2×(x-4)×5+(5)^2\]
(15)( )を「A」で置きかえます。そして、式の形をすこし変えると、どのように因数分解すればいいのかがわかるのではないでしょうか。
\[A^2-2×A×8+(8)^2\]
つぎのようになります。
\[(A-8)^2\]
Aをもとに戻すとつぎのようになります。
\[(x+7-8)^2\]
なお、式を見て因数分解できるのならば、Aに置きかえる必要はありません。
\[(x+7)^2-2×(x+7)×8+(8)^2\]
置きかえて因数分解する問題(解答)
数学は特にケアレスミスを見かけます。「私もだ」と思ったひと、ケアレスミスに悩んでいませんか。実はケアレスミスはシンプルな方法で減らすことができます。どのようにすればいいのでしょうか。
それは、繰り返し問題を解くだけです。何度も問題を解くと慣れてたとえ緊張しても正確に計算できるようになります。
単純な方法ですが、効果的です。ケアレスミスをなくすだけで数学の成績はあがるので、何度も繰り返し問題を解きましょう。
(1)答えはつぎのようになります。
\[(a+5)^2\]
(2)答えはつぎのようになります。
\[(x-10)^2\]
(3)答えはつぎのようになります。
\[(x+6)^2\]
(4)答えはつぎのようになります。
\[(x+1)^2\]
(5)答えはつぎのようになります。
\[(x-10)^2\]
(6)答えはつぎのようになります。
\[(a-4)^2\]
(7)答えはつぎのようになります。
\[(x-2)^2\]
(8)答えはつぎのようになります。
\[(x-10)^2\]
(9)答えはつぎのようになります。
\[(x-8)^2\]
(10)答えはつぎのようになります。
\[(a+5)^2\]
(11)答えはつぎのようになります。
\[(x-5)^2\]
(12)答えはつぎのようになります。
\[(a-7)^2\]
(13)答えはつぎのようになります。
\[(x-6)^2\]
(14)答えはつぎのようになります。
\[(x-9)^2\]
(15)答えはつぎのようになります。
\[(x-1)^2\]