【中学数学】共通項でくくる因数分解の問題(共通因数:係数が分数の変数、変数:3、項の数:2) No.9

『5つのパターンで9割わかる!中学数学の文章題』(総合科学出版)などの著書がある石崎です。
さて、数学は、所詮、入試でしか役立たないと思っているひとも多いと思います。
しかし、もちろんすべてではないですが、数学は実生活で役立ちます。数学の勉強をしっかりしておきましょう。具体的には、まずは基本を理解して、つぎに同じ問題を繰り返し解きましょう。特に計算問題は繰り返し問題を解くことが大切です。というわけで、因数分解の演習問題を解く練習をしましょう。

<はじめてのひとへ>
・数式の表示は、MathJaxを利用しています。数式を表示させるにはネット接続とJavascriptを「オン」にすることが必要です。
・このページは印刷できます。詳しい方法は、計算問題を印刷する方法をご覧になってください。
・計算のしかたを工夫すれば楽に計算できるケースもあります。計算式はあくまで目安ですので、あらかじめご了承ください。
計算問題のページには、ほかにも、たくさん計算問題があります。

<出題内容>
・対象:中学三年生(中学数学)
・種類:因数分解(共通因子でくくる問題)
共通因数:係数が分数の変数、変数:3
項の数:2
・問題数:10問

スポンサード リンク


共通項でくくる因数分解の問題

(1)因数分解してください。共通因子は「係数は分数、変数3つ」です。

\[-\frac{24}{7}xyz-\frac{27}{7}yz\]

(2)因数分解してください。共通因子は「係数は分数、変数3つ」です。

\[\frac{15}{4}xz^{3}-\frac{27}{4}z^{3}\]

(3)因数分解してください。共通因子は「係数は分数、変数3つ」です。

\[-3a^{4}b^{2}c^{3}+\frac{7}{3}a^{3}b^{2}c^{3}\]

(4)因数分解してください。共通因子は「係数は分数、変数3つ」です。

\[x^{4}+\frac{3}{4}x^{3}\]

(5)因数分解してください。共通因子は「係数は分数、変数3つ」です。

\[\frac{1}{3}abc^{2}+3bc^{2}\]

(6)因数分解してください。共通因子は「係数は分数、変数3つ」です。

\[\frac{30}{7}ab^{2}c+\frac{18}{7}b^{2}c\]

(7)因数分解してください。共通因子は「係数は分数、変数3つ」です。

\[-\frac{56}{9}x^{2}y^{3}+\frac{35}{9}xy^{3}\]

(8)因数分解してください。共通因子は「係数は分数、変数3つ」です。

\[-2a^{3}b^{3}c^{2}+\frac{3}{2}a^{2}b^{3}c^{2}\]

(9)因数分解してください。共通因子は「係数は分数、変数3つ」です。

\[-\frac{2}{3}a^{4}c^{2}-\frac{2}{9}a^{3}c^{2}\]

(10)因数分解してください。共通因子は「係数は分数、変数3つ」です。

\[\frac{18}{7}x^{3}y^{3}z^{3}-\frac{8}{7}x^{2}y^{3}z^{3}\]

共通項でくくる因数分解の問題(計算式)

(1)つぎのように変形できます。

\[(-\frac{3}{7}yz)×8x+(-\frac{3}{7}yz)×9\]
(2)つぎのように変形できます。

\[\frac{3}{4}z^{3}×5x+\frac{3}{4}z^{3}×(-9)\]
(3)つぎのように変形できます。

\[(-\frac{1}{3}a^{3}b^{2}c^{3})×9a+(-\frac{1}{3}a^{3}b^{2}c^{3})×(-7)\]
(4)つぎのように変形できます。

\[\frac{1}{4}x^{3}×4x+\frac{1}{4}x^{3}×3\]
(5)つぎのように変形できます。

\[\frac{1}{3}bc^{2}×a+\frac{1}{3}bc^{2}×9\]
(6)つぎのように変形できます。

\[\frac{6}{7}b^{2}c×5a+\frac{6}{7}b^{2}c×3\]
(7)つぎのように変形できます。

\[(-\frac{7}{9}xy^{3})×8x+(-\frac{7}{9}xy^{3})×(-5)\]
(8)つぎのように変形できます。

\[(-\frac{1}{2}a^{2}b^{3}c^{2})×4a+(-\frac{1}{2}a^{2}b^{3}c^{2})×(-3)\]
(9)つぎのように変形できます。

\[(-\frac{2}{9}a^{3}c^{2})×3a+(-\frac{2}{9}a^{3}c^{2})×1\]
(10)つぎのように変形できます。

\[\frac{2}{7}x^{2}y^{3}z^{3}×9x+\frac{2}{7}x^{2}y^{3}z^{3}×(-4)\]

共通項でくくる因数分解の問題(解答)

数学は特にケアレスミスを見かけます。「私もだ」と思ったひと、ケアレスミスに悩んでいませんか。実はケアレスミスはシンプルな方法で減らすことができます。どのようにすればいいのでしょうか。
それは、繰り返し計算問題を解くだけです。何度も問題を解くと慣れてたとえ緊張しても正確に計算できるようになります。
単純な方法ですが、効果てきめんです。ケアレスミスをなくすだけで数学の成績はあがるので、何度も繰り返し問題を解きましょう。

(1)答えはつぎのようになります。

\[-\frac{3}{7}yz(8x+9)\]

(2)答えはつぎのようになります。

\[\frac{3}{4}z^{3}(5x-9)\]

(3)答えはつぎのようになります。

\[-\frac{1}{3}a^{3}b^{2}c^{3}(9a-7)\]

(4)答えはつぎのようになります。

\[\frac{1}{4}x^{3}(4x+3)\]

(5)答えはつぎのようになります。

\[\frac{1}{3}bc^{2}(a+9)\]

(6)答えはつぎのようになります。

\[\frac{6}{7}b^{2}c(5a+3)\]

(7)答えはつぎのようになります。

\[-\frac{7}{9}xy^{3}(8x-5)\]

(8)答えはつぎのようになります。

\[-\frac{1}{2}a^{2}b^{3}c^{2}(4a-3)\]

(9)答えはつぎのようになります。

\[-\frac{2}{9}a^{3}c^{2}(3a+1)\]

(10)答えはつぎのようになります。

\[\frac{2}{7}x^{2}y^{3}z^{3}(9x-4)\]

「数学を勉強するすべての人へ」のトップページ