係数が分数の文字のひき算(3項)(代入)

『5つのパターンで9割わかる!中学数学の文章題』(総合科学出版)などの著書がある石崎です。さて、数学は、所詮、入試のためのもので実生活では役立たないと思っているひとも多いのではないでしょうか。
しかし、数学は案外役立ちます。数学の勉強をしっかりとしておきましょう。具体的には、まずは基本を理解して、つぎに反復練習することです。というわけで、今日も、はりきって文字と式の計算をしましょう。
計算問題を何度も解いて本当に数学が得意になるのかと懐疑的なひともいるかもしれませんが、がんばって解いてみてください。数学が苦手と感じなくなるかもしれませんから。何度も分数の計算をしているとつらくなるかもしれませんが、それを乗り越えてくださいね。

<はじめてのひとへ>
・数式の表示は、MathJaxを利用しています。数式を表示させるにはネット接続とJavascriptを「オン」にすることが必要です。
・このページは印刷できます。詳しい方法は、計算問題を印刷する方法をご覧になってください。
・計算する前に約分するなど、計算のしかたを工夫すれば楽に計算できるケースもあります。計算式はあくまで目安ですので、あらかじめご了承ください。
計算問題のページには、ほかにも、たくさん計算問題があります。

<出題内容>
文字と式の代入(中学数学)
・文字式の形:係数が分数の文字のひき算(3項)
・問題数:20問

スポンサード リンク


係数が分数の文字のひき算(3項)(代入)

(1)つぎの式に、「x=4 」を代入すると、いくつになりますか。
\[\frac{2}{19}x - \frac{1}{96}x - \frac{3}{34}x=\]

(2)つぎの式に、「x=3 」を代入すると、いくつになりますか。
\[\frac{7}{10}x - \frac{6}{97}x - \frac{1}{8}x=\]

(3)つぎの式に、「x=-3 」を代入すると、いくつになりますか。
\[\frac{1}{7}x - \frac{1}{25}x - \frac{3}{44}x=\]

(4)つぎの式に、「x=8 」を代入すると、いくつになりますか。
\[\frac{1}{2}x - \frac{6}{59}x - \frac{1}{13}x=\]

(5)つぎの式に、「x=3 」を代入すると、いくつになりますか。
\[\frac{9}{22}x - \frac{1}{10}x - \frac{1}{13}x=\]

(6)つぎの式に、「x=6 」を代入すると、いくつになりますか。
\[\frac{3}{34}x - \frac{1}{17}x - \frac{1}{34}x=\]

(7)つぎの式に、「x=1 」を代入すると、いくつになりますか。
\[\frac{8}{7}x - \frac{7}{97}x - \frac{5}{28}x=\]

(8)つぎの式に、「x=2 」を代入すると、いくつになりますか。
\[\frac{7}{39}x - \frac{6}{65}x - \frac{1}{81}x=\]

(9)つぎの式に、「x=1 」を代入すると、いくつになりますか。
\[\frac{5}{6}x - \frac{7}{20}x - \frac{9}{62}x=\]

(10)つぎの式に、「x=9 」を代入すると、いくつになりますか。
\[\frac{1}{5}x - \frac{2}{27}x - \frac{6}{79}x=\]

(11)つぎの式に、「x=-8 」を代入すると、いくつになりますか。
\[\frac{1}{16}x - \frac{1}{31}x - \frac{1}{59}x=\]

(12)つぎの式に、「x=3 」を代入すると、いくつになりますか。
\[\frac{9}{71}x - \frac{1}{34}x - \frac{1}{15}x=\]

(13)つぎの式に、「x=9 」を代入すると、いくつになりますか。
\[\frac{3}{22}x - \frac{3}{59}x - \frac{3}{46}x=\]

(14)つぎの式に、「x=6 」を代入すると、いくつになりますか。
\[\frac{2}{29}x - \frac{1}{88}x - \frac{2}{93}x=\]

(15)つぎの式に、「x=-4 」を代入すると、いくつになりますか。
\[\frac{7}{5}x - \frac{1}{23}x - \frac{3}{44}x=\]

(16)つぎの式に、「x=-9 」を代入すると、いくつになりますか。
\[\frac{5}{42}x - \frac{7}{83}x - \frac{1}{41}x=\]

(17)つぎの式に、「x=-7 」を代入すると、いくつになりますか。
\[\frac{1}{7}x - \frac{3}{59}x - \frac{1}{70}x=\]

(18)つぎの式に、「x=6 」を代入すると、いくつになりますか。
\[\frac{7}{18}x - \frac{4}{53}x - \frac{3}{47}x=\]

(19)つぎの式に、「x=1 」を代入すると、いくつになりますか。
\[\frac{3}{10}x - \frac{1}{67}x - \frac{4}{33}x=\]

(20)つぎの式に、「x=9 」を代入すると、いくつになりますか。
\[\frac{4}{21}x - \frac{3}{22}x - \frac{1}{42}x=\]

係数が分数の文字のひき算(3項)(代入)(解きかた)

(1)さきに文字と式の計算をします。
\[\frac{2*96-1*19}{19*96}x - \frac{3}{34}x=\]
計算すると、つぎの式になります。
\[\frac{173*34-3*1824}{1824*34}x=\]
約分:計算式1は約分はありません。、計算式2は2。

さらに計算すると、つぎの式になります。これに「x=4 」を代入します。
\[\frac{205}{31008}x\]
(2)さきに文字と式の計算をします。
\[\frac{7*97-6*10}{10*97}x - \frac{1}{8}x=\]
計算すると、つぎの式になります。
\[\frac{619*8-1*970}{970*8}x=\]
約分:計算式1は約分はありません。、計算式2は2。

さらに計算すると、つぎの式になります。これに「x=3 」を代入します。
\[\frac{1991}{3880}x\]
(3)さきに文字と式の計算をします。
\[\frac{1*25-1*7}{7*25}x - \frac{3}{44}x=\]
計算すると、つぎの式になります。
\[\frac{18*44-3*175}{175*44}x=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「x=-3 」を代入します。
\[\frac{267}{7700}x\]
(4)さきに文字と式の計算をします。
\[\frac{1*59-6*2}{2*59}x - \frac{1}{13}x=\]
計算すると、つぎの式になります。
\[\frac{47*13-1*118}{118*13}x=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「x=8 」を代入します。
\[\frac{493}{1534}x\]
(5)さきに文字と式の計算をします。
\[\frac{9*10-1*22}{22*10}x - \frac{1}{13}x=\]
計算すると、つぎの式になります。
\[\frac{17*13-1*55}{55*13}x=\]
約分:計算式1は4、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「x=3 」を代入します。
\[\frac{166}{715}x\]
(6)さきに文字と式の計算をします。
\[\frac{3-1}{34}x - \frac{1}{17}x=\]
計算すると、つぎの式になります。
\[\frac{2*17-1*34}{34*17}x=\]
約分:計算式1は2、計算式2は578。

さらに計算すると、つぎの式になります。これに「x=6 」を代入します。
\begin{eqnarray}0x\end{eqnarray}
(7)さきに文字と式の計算をします。
\[\frac{8*97-7*7}{7*97}x - \frac{5}{28}x=\]
計算すると、つぎの式になります。
\[\frac{727*28-5*679}{679*28}x=\]
約分:計算式1は約分はありません。、計算式2は7。

さらに計算すると、つぎの式になります。これに「x=1 」を代入します。
\[\frac{2423}{2716}x\]
(8)さきに文字と式の計算をします。
\[\frac{7*65-6*39}{39*65}x - \frac{1}{81}x=\]
計算すると、つぎの式になります。
\[\frac{17*81-1*195}{195*81}x=\]
約分:計算式1は13、計算式2は3。

さらに計算すると、つぎの式になります。これに「x=2 」を代入します。
\[\frac{394}{5265}x\]
(9)さきに文字と式の計算をします。
\[\frac{5*20-7*6}{6*20}x - \frac{9}{62}x=\]
計算すると、つぎの式になります。
\[\frac{29*62-9*60}{60*62}x=\]
約分:計算式1は2、計算式2は2。

さらに計算すると、つぎの式になります。これに「x=1 」を代入します。
\[\frac{629}{1860}x\]
(10)さきに文字と式の計算をします。
\[\frac{1*27-2*5}{5*27}x - \frac{6}{79}x=\]
計算すると、つぎの式になります。
\[\frac{17*79-6*135}{135*79}x=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「x=9 」を代入します。
\[\frac{533}{10665}x\]
(11)さきに文字と式の計算をします。
\[\frac{1*31-1*16}{16*31}x - \frac{1}{59}x=\]
計算すると、つぎの式になります。
\[\frac{15*59-1*496}{496*59}x=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「x=-8 」を代入します。
\[\frac{389}{29264}x\]
(12)さきに文字と式の計算をします。
\[\frac{9*34-1*71}{71*34}x - \frac{1}{15}x=\]
計算すると、つぎの式になります。
\[\frac{235*15-1*2414}{2414*15}x=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「x=3 」を代入します。
\[\frac{1111}{36210}x\]
(13)さきに文字と式の計算をします。
\[\frac{3*59-3*22}{22*59}x - \frac{3}{46}x=\]
計算すると、つぎの式になります。
\[\frac{111*46-3*1298}{1298*46}x=\]
約分:計算式1は約分はありません。、計算式2は4。

さらに計算すると、つぎの式になります。これに「x=9 」を代入します。
\[\frac{303}{14927}x\]
(14)さきに文字と式の計算をします。
\[\frac{2*88-1*29}{29*88}x - \frac{2}{93}x=\]
計算すると、つぎの式になります。
\[\frac{147*93-2*2552}{2552*93}x=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「x=6 」を代入します。
\[\frac{8567}{237336}x\]
(15)さきに文字と式の計算をします。
\[\frac{7*23-1*5}{5*23}x - \frac{3}{44}x=\]
計算すると、つぎの式になります。
\[\frac{156*44-3*115}{115*44}x=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「x=-4 」を代入します。
\[\frac{6519}{5060}x\]
(16)さきに文字と式の計算をします。
\[\frac{5*83-7*42}{42*83}x - \frac{1}{41}x=\]
計算すると、つぎの式になります。
\[\frac{121*41-1*3486}{3486*41}x=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「x=-9 」を代入します。
\[\frac{1475}{142926}x\]
(17)さきに文字と式の計算をします。
\[\frac{1*59-3*7}{7*59}x - \frac{1}{70}x=\]
計算すると、つぎの式になります。
\[\frac{38*70-1*413}{413*70}x=\]
約分:計算式1は約分はありません。、計算式2は7。

さらに計算すると、つぎの式になります。これに「x=-7 」を代入します。
\[\frac{321}{4130}x\]
(18)さきに文字と式の計算をします。
\[\frac{7*53-4*18}{18*53}x - \frac{3}{47}x=\]
計算すると、つぎの式になります。
\[\frac{299*47-3*954}{954*47}x=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「x=6 」を代入します。
\[\frac{11191}{44838}x\]
(19)さきに文字と式の計算をします。
\[\frac{3*67-1*10}{10*67}x - \frac{4}{33}x=\]
計算すると、つぎの式になります。
\[\frac{191*33-4*670}{670*33}x=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「x=1 」を代入します。
\[\frac{3623}{22110}x\]
(20)さきに文字と式の計算をします。
\[\frac{4*22-3*21}{21*22}x - \frac{1}{42}x=\]
計算すると、つぎの式になります。
\[\frac{25*42-1*462}{462*42}x=\]
約分:計算式1は約分はありません。、計算式2は588。

さらに計算すると、つぎの式になります。これに「x=9 」を代入します。
\[\frac{1}{33}x\]

係数が分数の文字のひき算(3項)(代入)(解答)

答え合わせをしてそれで終わりではいけません。不正解の問題をそのままにせず、なぜ間違えたのかをしっかり理解することが重要です。面倒と感じるひとは多いのですが、こうしないと計算力はつきません。
ただ、間違えた理由がわかっても、同じ間違いを繰り返してしまうものです。そこでつぎに不正解の問題をもう一度解きましょう。そして、正解するまで、これを繰り返します。正解するだろうと思うかもしれませんが不正解になるものですよ。

(1)\[\frac{205}{7752}\]

(2)\[\frac{5973}{3880}\]

(3)\[- \frac{801}{7700}\]

(4)\[\frac{1972}{767}\]

(5)\[\frac{498}{715}\]

(6)\begin{eqnarray}0\end{eqnarray}

(7)\[\frac{2423}{2716}\]

(8)\[\frac{788}{5265}\]

(9)\[\frac{629}{1860}\]

(10)\[\frac{533}{1185}\]

(11)\[- \frac{389}{3658}\]

(12)\[\frac{1111}{12070}\]

(13)\[\frac{2727}{14927}\]

(14)\[\frac{8567}{39556}\]

(15)\[- \frac{6519}{1265}\]

(16)\[- \frac{4425}{47642}\]

(17)\[- \frac{321}{590}\]

(18)\[\frac{11191}{7473}\]

(19)\[\frac{3623}{22110}\]

(20)\[\frac{3}{11}\]

「数学を勉強するすべての人へ」のトップページ