係数が分数の文字のひき算(3項)(代入)

どうも、『0からやりなおす中学数学の計算問題』(総合科学出版)などの著書がある石崎です。
さて、数学は、所詮、入試でしか利用しないと思っているひとも多いと思います。
しかし、もちろんすべてではないですが、数学は案外役立ちます。数学をしっかり勉強しておきましょう。具体的には、基本を理解してから反復練習することです。というわけで、今日も、はりきって文字と式の計算を解きましょう。
計算問題を何度も解いて本当に数学が得意になるのかと考えるひともいるかもしれませんが、がんばって解いてみてください。数学が苦手と感じなくなるかもしれませんから。何度も分数の計算をしているとつらくなりますが、それを乗り越えてくださいね。

<はじめてのひとへ>
・数式の表示は、MathJaxを利用しています。数式を表示させるにはネット接続とJavascriptを「オン」にすることが必要です。
・このページは印刷できます。詳しい方法は、計算問題を印刷する方法をご覧になってください。
・計算する前に約分するなど、計算のしかたを工夫すれば楽に計算できるケースもあります。計算式はあくまで目安ですので、あらかじめご了承ください。
計算問題のページには、ほかにも、たくさん計算問題があります。

<出題内容>
文字と式の代入(中学数学)
・文字式の形:係数が分数の文字のひき算(3項)
・問題数:20問

スポンサード リンク


係数が分数の文字のひき算(3項)(代入)

(1)つぎの式に、「a=2 」を代入すると、いくつになりますか。
\[\frac{9}{5}a - \frac{1}{4}a - \frac{2}{3}a=\]

(2)つぎの式に、「a=-3 」を代入すると、いくつになりますか。
\[\frac{5}{6}a - \frac{1}{5}a - \frac{1}{2}a=\]

(3)つぎの式に、「a=-3 」を代入すると、いくつになりますか。
\[\frac{4}{5}a - \frac{3}{8}a - \frac{1}{5}a=\]

(4)つぎの式に、「a=-5 」を代入すると、いくつになりますか。
\[\frac{3}{2}a - \frac{3}{8}a - \frac{1}{8}a=\]

(5)つぎの式に、「a=-4 」を代入すると、いくつになりますか。
\[\frac{9}{2}a - \frac{4}{3}a - \frac{2}{3}a=\]

(6)つぎの式に、「a=8 」を代入すると、いくつになりますか。
\[\frac{6}{7}a - \frac{4}{7}a - \frac{1}{6}a=\]

(7)つぎの式に、「a=7 」を代入すると、いくつになりますか。
\[\frac{7}{8}a - \frac{1}{4}a - \frac{1}{9}a=\]

(8)つぎの式に、「a=3 」を代入すると、いくつになりますか。
\[\frac{7}{6}a - \frac{4}{9}a - \frac{3}{7}a=\]

(9)つぎの式に、「a=-7 」を代入すると、いくつになりますか。
\[\frac{9}{2}a - \frac{1}{4}a - \frac{7}{6}a=\]

(10)つぎの式に、「a=-4 」を代入すると、いくつになりますか。
\[\frac{3}{2}a - \frac{3}{8}a - \frac{2}{5}a=\]

(11)つぎの式に、「a=-2 」を代入すると、いくつになりますか。
\[\frac{7}{2}a - \frac{1}{4}a - \frac{4}{3}a=\]

(12)つぎの式に、「a=7 」を代入すると、いくつになりますか。
\[\frac{7}{2}a - \frac{5}{2}a - \frac{8}{9}a=\]

(13)つぎの式に、「a=-1 」を代入すると、いくつになりますか。
\[\frac{9}{2}a - \frac{9}{7}a - \frac{9}{8}a=\]

(14)つぎの式に、「a=-3 」を代入すると、いくつになりますか。
\[\frac{9}{7}a - \frac{1}{4}a - \frac{3}{7}a=\]

(15)つぎの式に、「a=-8 」を代入すると、いくつになりますか。
\[\frac{6}{5}a - \frac{2}{5}a - \frac{2}{9}a=\]

(16)つぎの式に、「a=6 」を代入すると、いくつになりますか。
\[\frac{5}{2}a - \frac{1}{2}a - \frac{3}{4}a=\]

(17)つぎの式に、「a=-7 」を代入すると、いくつになりますか。
\[\frac{4}{3}a - \frac{1}{2}a - \frac{5}{7}a=\]

(18)つぎの式に、「a=-4 」を代入すると、いくつになりますか。
\[\frac{9}{2}a - \frac{5}{9}a - \frac{7}{6}a=\]

(19)つぎの式に、「a=6 」を代入すると、いくつになりますか。
\[\frac{7}{2}a - \frac{5}{4}a - \frac{7}{4}a=\]

(20)つぎの式に、「a=9 」を代入すると、いくつになりますか。
\[\frac{9}{7}a - \frac{5}{9}a - \frac{1}{3}a=\]

係数が分数の文字のひき算(3項)(代入)(解きかた)

(1)さきに文字と式の計算をします。
\[\frac{9*4-1*5}{5*4}a - \frac{2}{3}a=\]
計算すると、つぎの式になります。
\[\frac{31*3-2*20}{20*3}a=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「a=2 」を代入します。
\[\frac{53}{60}a\]
(2)さきに文字と式の計算をします。
\[\frac{5*5-1*6}{6*5}a - \frac{1}{2}a=\]
計算すると、つぎの式になります。
\[\frac{19*2-1*30}{30*2}a=\]
約分:計算式1は約分はありません。、計算式2は4。

さらに計算すると、つぎの式になります。これに「a=-3 」を代入します。
\[\frac{2}{15}a\]
(3)さきに文字と式の計算をします。
\[\frac{4-1}{5}a - \frac{3}{8}a=\]
計算すると、つぎの式になります。
\[\frac{3*8-3*5}{5*8}a=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「a=-3 」を代入します。
\[\frac{9}{40}a\]
(4)さきに文字と式の計算をします。
\[\frac{3*8-3*2}{2*8}a - \frac{1}{8}a=\]
計算すると、つぎの式になります。
\[\frac{9*8-1*8}{8*8}a=\]
約分:計算式1は2、計算式2は64。

さらに計算すると、つぎの式になります。これに「a=-5 」を代入します。
\begin{eqnarray}1a\end{eqnarray}
(5)さきに文字と式の計算をします。
\[\frac{9*3-4*2}{2*3}a - \frac{2}{3}a=\]
計算すると、つぎの式になります。
\[\frac{19*3-2*6}{6*3}a=\]
約分:計算式1は約分はありません。、計算式2は9。

さらに計算すると、つぎの式になります。これに「a=-4 」を代入します。
\[\frac{5}{2}a\]
(6)さきに文字と式の計算をします。
\[\frac{6-4}{7}a - \frac{1}{6}a=\]
計算すると、つぎの式になります。
\[\frac{2*6-1*7}{7*6}a=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「a=8 」を代入します。
\[\frac{5}{42}a\]
(7)さきに文字と式の計算をします。
\[\frac{7*4-1*8}{8*4}a - \frac{1}{9}a=\]
計算すると、つぎの式になります。
\[\frac{5*9-1*8}{8*9}a=\]
約分:計算式1は4、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「a=7 」を代入します。
\[\frac{37}{72}a\]
(8)さきに文字と式の計算をします。
\[\frac{7*9-4*6}{6*9}a - \frac{3}{7}a=\]
計算すると、つぎの式になります。
\[\frac{13*7-3*18}{18*7}a=\]
約分:計算式1は3、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「a=3 」を代入します。
\[\frac{37}{126}a\]
(9)さきに文字と式の計算をします。
\[\frac{9*4-1*2}{2*4}a - \frac{7}{6}a=\]
計算すると、つぎの式になります。
\[\frac{17*6-7*4}{4*6}a=\]
約分:計算式1は2、計算式2は2。

さらに計算すると、つぎの式になります。これに「a=-7 」を代入します。
\[\frac{37}{12}a\]
(10)さきに文字と式の計算をします。
\[\frac{3*8-3*2}{2*8}a - \frac{2}{5}a=\]
計算すると、つぎの式になります。
\[\frac{9*5-2*8}{8*5}a=\]
約分:計算式1は2、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「a=-4 」を代入します。
\[\frac{29}{40}a\]
(11)さきに文字と式の計算をします。
\[\frac{7*4-1*2}{2*4}a - \frac{4}{3}a=\]
計算すると、つぎの式になります。
\[\frac{13*3-4*4}{4*3}a=\]
約分:計算式1は2、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「a=-2 」を代入します。
\[\frac{23}{12}a\]
(12)さきに文字と式の計算をします。
\[\frac{7-5}{2}a - \frac{8}{9}a=\]
計算すると、つぎの式になります。
\[\frac{2*9-8*2}{2*9}a=\]
約分:計算式1は2、計算式2は2。

さらに計算すると、つぎの式になります。これに「a=7 」を代入します。
\[\frac{1}{9}a\]
(13)さきに文字と式の計算をします。
\[\frac{9*7-9*2}{2*7}a - \frac{9}{8}a=\]
計算すると、つぎの式になります。
\[\frac{45*8-9*14}{14*8}a=\]
約分:計算式1は約分はありません。、計算式2は2。

さらに計算すると、つぎの式になります。これに「a=-1 」を代入します。
\[\frac{117}{56}a\]
(14)さきに文字と式の計算をします。
\[\frac{9-3}{7}a - \frac{1}{4}a=\]
計算すると、つぎの式になります。
\[\frac{6*4-1*7}{7*4}a=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「a=-3 」を代入します。
\[\frac{17}{28}a\]
(15)さきに文字と式の計算をします。
\[\frac{6-2}{5}a - \frac{2}{9}a=\]
計算すると、つぎの式になります。
\[\frac{4*9-2*5}{5*9}a=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「a=-8 」を代入します。
\[\frac{26}{45}a\]
(16)さきに文字と式の計算をします。
\[\frac{5-1}{2}a - \frac{3}{4}a=\]
計算すると、つぎの式になります。
\[\frac{4*4-3*2}{2*4}a=\]
約分:計算式1は2、計算式2は2。

さらに計算すると、つぎの式になります。これに「a=6 」を代入します。
\[\frac{5}{4}a\]
(17)さきに文字と式の計算をします。
\[\frac{4*2-1*3}{3*2}a - \frac{5}{7}a=\]
計算すると、つぎの式になります。
\[\frac{5*7-5*6}{6*7}a=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「a=-7 」を代入します。
\[\frac{5}{42}a\]
(18)さきに文字と式の計算をします。
\[\frac{9*9-5*2}{2*9}a - \frac{7}{6}a=\]
計算すると、つぎの式になります。
\[\frac{71*6-7*18}{18*6}a=\]
約分:計算式1は約分はありません。、計算式2は12。

さらに計算すると、つぎの式になります。これに「a=-4 」を代入します。
\[\frac{25}{9}a\]
(19)さきに文字と式の計算をします。
\[\frac{7*4-5*2}{2*4}a - \frac{7}{4}a=\]
計算すると、つぎの式になります。
\[\frac{9*4-7*4}{4*4}a=\]
約分:計算式1は2、計算式2は8。

さらに計算すると、つぎの式になります。これに「a=6 」を代入します。
\[\frac{1}{2}a\]
(20)さきに文字と式の計算をします。
\[\frac{9*9-5*7}{7*9}a - \frac{1}{3}a=\]
計算すると、つぎの式になります。
\[\frac{46*3-1*63}{63*3}a=\]
約分:計算式1は約分はありません。、計算式2は3。

さらに計算すると、つぎの式になります。これに「a=9 」を代入します。
\[\frac{25}{63}a\]

係数が分数の文字のひき算(3項)(代入)(解答)

ケアレスミスなどの計算ミスはしたくないですね。計算ミスを防ぎましょう。どのようにすれば計算ミスを減らすことができるのでしょうか。
それは、ひたすら計算問題を解くだけです。解いた問題が多ければ多いほど慣れて緊張しても正確に計算できるようになります。
シンプルな方法ですが、効果的です。ケアレスミスをなくすだけで数学の成績はあがるので、何度も繰り返し問題を解きましょう。
ちなみに、塾にて小テストで繰り返し同じような問題を解かせたときの経験ですが、生徒のケアレスミスをゼロにはできませんでした。ただ、繰り返し問題を解かせれば解かせるほど、計算ミスは減りました。やはり効果があるようです。

(1)\[\frac{53}{30}\]

(2)\[- \frac{2}{5}\]

(3)\[- \frac{27}{40}\]

(4)\begin{eqnarray}-5\end{eqnarray}

(5)\begin{eqnarray}-10\end{eqnarray}

(6)\[\frac{20}{21}\]

(7)\[\frac{259}{72}\]

(8)\[\frac{37}{42}\]

(9)\[- \frac{259}{12}\]

(10)\[- \frac{29}{10}\]

(11)\[- \frac{23}{6}\]

(12)\[\frac{7}{9}\]

(13)\[- \frac{117}{56}\]

(14)\[- \frac{51}{28}\]

(15)\[- \frac{208}{45}\]

(16)\[\frac{15}{2}\]

(17)\[- \frac{5}{6}\]

(18)\[- \frac{100}{9}\]

(19)\begin{eqnarray}3\end{eqnarray}

(20)\[\frac{25}{7}\]

「数学を勉強するすべての人へ」のトップページ