係数が分数の文字のたし算とひき算(3項)(代入)

『0からやりなおす中学数学の計算問題』(総合科学出版)などの著書がある石崎です。さて、数学は、所詮、入試でしか役立たないと思っているひとも多いのではないでしょうか。
しかし、もちろんすべてではないですが、数学は案外役立ちます。数学をしっかり勉強しておきましょう。具体的には、基本を理解してから反復練習することです。というわけで、はりきって文字と式の計算をしましょう。

<はじめてのひとへ>
・数式の表示は、MathJaxを利用しています。数式を表示させるにはネット接続とJavascriptを「オン」にすることが必要です。
・このページは印刷できます。詳しい方法は、計算問題を印刷する方法をご覧になってください。
・計算する前に約分するなど、計算のしかたを工夫すれば楽に計算できるケースもあります。計算式はあくまで目安ですので、あらかじめご了承ください。
計算問題のページには、ほかにも、たくさん計算問題があります。

<出題内容>
文字と式の代入(中学数学)
・文字式の形:係数が分数の文字のたし算とひき算(3項)
・問題数:20問

スポンサード リンク


係数が分数の文字のたし算とひき算(3項)(代入)

(1)つぎの式に、「b=3 」を代入すると、いくつになりますか。
\[\frac{67}{76}b - \frac{1}{9}b + \frac{64}{39}b=\]

(2)つぎの式に、「b=-1 」を代入すると、いくつになりますか。
\[\frac{1}{19}b - \frac{45}{23}b + \frac{86}{31}b=\]

(3)つぎの式に、「b=-8 」を代入すると、いくつになりますか。
\[\frac{69}{41}b - \frac{7}{3}b + \frac{35}{13}b=\]

(4)つぎの式に、「b=-6 」を代入すると、いくつになりますか。
\[\frac{73}{51}b - \frac{11}{9}b + \frac{94}{25}b=\]

(5)つぎの式に、「b=-2 」を代入すると、いくつになりますか。
\[\frac{1}{6}b - \frac{19}{16}b + \frac{82}{67}b=\]

(6)つぎの式に、「b=-3 」を代入すると、いくつになりますか。
\[\frac{93}{80}b - \frac{23}{45}b + \frac{35}{32}b=\]

(7)つぎの式に、「b=-6 」を代入すると、いくつになりますか。
\[\frac{14}{69}b - \frac{1}{9}b + \frac{41}{56}b=\]

(8)つぎの式に、「b=-7 」を代入すると、いくつになりますか。
\[\frac{23}{70}b - \frac{2}{17}b + \frac{73}{52}b=\]

(9)つぎの式に、「b=8 」を代入すると、いくつになりますか。
\[\frac{73}{32}b - \frac{5}{98}b + \frac{4}{3}b=\]

(10)つぎの式に、「b=9 」を代入すると、いくつになりますか。
\[\frac{45}{76}b - \frac{33}{38}b + \frac{41}{72}b=\]

(11)つぎの式に、「b=-1 」を代入すると、いくつになりますか。
\[\frac{18}{5}b - \frac{1}{2}b + \frac{5}{48}b=\]

(12)つぎの式に、「b=-2 」を代入すると、いくつになりますか。
\[\frac{15}{46}b - \frac{5}{23}b + \frac{16}{21}b=\]

(13)つぎの式に、「b=5 」を代入すると、いくつになりますか。
\[\frac{38}{13}b - \frac{1}{3}b + \frac{2}{17}b=\]

(14)つぎの式に、「b=-7 」を代入すると、いくつになりますか。
\[\frac{5}{4}b - \frac{19}{71}b + \frac{78}{79}b=\]

(15)つぎの式に、「b=-2 」を代入すると、いくつになりますか。
\[\frac{48}{19}b - \frac{97}{50}b + \frac{77}{52}b=\]

(16)つぎの式に、「b=-9 」を代入すると、いくつになりますか。
\[\frac{77}{69}b - \frac{83}{50}b + \frac{77}{2}b=\]

(17)つぎの式に、「b=-9 」を代入すると、いくつになりますか。
\[\frac{23}{20}b - \frac{11}{9}b + \frac{65}{44}b=\]

(18)つぎの式に、「b=5 」を代入すると、いくつになりますか。
\[\frac{4}{9}b - \frac{56}{69}b + \frac{12}{23}b=\]

(19)つぎの式に、「b=3 」を代入すると、いくつになりますか。
\[\frac{43}{55}b - \frac{48}{43}b + \frac{10}{9}b=\]

(20)つぎの式に、「b=4 」を代入すると、いくつになりますか。
\[\frac{19}{18}b - \frac{51}{40}b + \frac{22}{79}b=\]

係数が分数の文字のたし算とひき算(3項)(代入)(解きかた)

(1)さきに文字と式の計算をします。
\[\frac{67*39-64*76}{76*39}b - \frac{1}{9}b=\]
計算すると、つぎの式になります。
\[\frac{-2251*9-1*2964}{2964*9}b=\]
約分:計算式1は約分はありません。、計算式2は3。

さらに計算すると、つぎの式になります。これに「b=3 」を代入します。
\[\frac{21443}{8892}b\]
(2)さきに文字と式の計算をします。
\[\frac{1*31-86*19}{19*31}b - \frac{45}{23}b=\]
計算すると、つぎの式になります。
\[\frac{-1603*23-45*589}{589*23}b=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「b=-1 」を代入します。
\[\frac{11790}{13547}b\]
(3)さきに文字と式の計算をします。
\[\frac{69*13-35*41}{41*13}b - \frac{7}{3}b=\]
計算すると、つぎの式になります。
\[\frac{-538*3-7*533}{533*3}b=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「b=-8 」を代入します。
\[\frac{3265}{1599}b\]
(4)さきに文字と式の計算をします。
\[\frac{73*25-94*51}{51*25}b - \frac{11}{9}b=\]
計算すると、つぎの式になります。
\[\frac{-2969*9-11*1275}{1275*9}b=\]
約分:計算式1は約分はありません。、計算式2は3。

さらに計算すると、つぎの式になります。これに「b=-6 」を代入します。
\[\frac{15182}{3825}b\]
(5)さきに文字と式の計算をします。
\[\frac{1*67-82*6}{6*67}b - \frac{19}{16}b=\]
計算すると、つぎの式になります。
\[\frac{425*16-19*-402}{-402*16}b=\]
約分:計算式1は約分はありません。、計算式2は2。

さらに計算すると、つぎの式になります。これに「b=-2 」を代入します。
\[\frac{653}{3216}b\]
(6)さきに文字と式の計算をします。
\[\frac{93*32-35*80}{80*32}b - \frac{23}{45}b=\]
計算すると、つぎの式になります。
\[\frac{11*45-23*160}{160*45}b=\]
約分:計算式1は16、計算式2は5。

さらに計算すると、つぎの式になります。これに「b=-3 」を代入します。
\[\frac{2513}{1440}b\]
(7)さきに文字と式の計算をします。
\[\frac{14*56-41*69}{69*56}b - \frac{1}{9}b=\]
計算すると、つぎの式になります。
\[\frac{2045*9-1*-3864}{-3864*9}b=\]
約分:計算式1は約分はありません。、計算式2は3。

さらに計算すると、つぎの式になります。これに「b=-6 」を代入します。
\[\frac{9551}{11592}b\]
(8)さきに文字と式の計算をします。
\[\frac{23*52-73*70}{70*52}b - \frac{2}{17}b=\]
計算すると、つぎの式になります。
\[\frac{1957*17-2*-1820}{-1820*17}b=\]
約分:計算式1は2、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「b=-7 」を代入します。
\[\frac{49961}{30940}b\]
(9)さきに文字と式の計算をします。
\[\frac{73*3-4*32}{32*3}b - \frac{5}{98}b=\]
計算すると、つぎの式になります。
\[\frac{91*98-5*96}{96*98}b=\]
約分:計算式1は約分はありません。、計算式2は2。

さらに計算すると、つぎの式になります。これに「b=8 」を代入します。
\[\frac{16763}{4704}b\]
(10)さきに文字と式の計算をします。
\[\frac{45*72-41*76}{76*72}b - \frac{33}{38}b=\]
計算すると、つぎの式になります。
\[\frac{31*38-33*1368}{1368*38}b=\]
約分:計算式1は4、計算式2は38。

さらに計算すると、つぎの式になります。これに「b=9 」を代入します。
\[\frac{401}{1368}b\]
(11)さきに文字と式の計算をします。
\[\frac{18*48-5*5}{5*48}b - \frac{1}{2}b=\]
計算すると、つぎの式になります。
\[\frac{839*2-1*240}{240*2}b=\]
約分:計算式1は約分はありません。、計算式2は2。

さらに計算すると、つぎの式になります。これに「b=-1 」を代入します。
\[\frac{769}{240}b\]
(12)さきに文字と式の計算をします。
\[\frac{15*21-16*46}{46*21}b - \frac{5}{23}b=\]
計算すると、つぎの式になります。
\[\frac{-421*23-5*966}{966*23}b=\]
約分:計算式1は約分はありません。、計算式2は23。

さらに計算すると、つぎの式になります。これに「b=-2 」を代入します。
\[\frac{841}{966}b\]
(13)さきに文字と式の計算をします。
\[\frac{38*17-2*13}{13*17}b - \frac{1}{3}b=\]
計算すると、つぎの式になります。
\[\frac{620*3-1*221}{221*3}b=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「b=5 」を代入します。
\[\frac{1795}{663}b\]
(14)さきに文字と式の計算をします。
\[\frac{5*79-78*4}{4*79}b - \frac{19}{71}b=\]
計算すると、つぎの式になります。
\[\frac{83*71-19*316}{316*71}b=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「b=-7 」を代入します。
\[\frac{44193}{22436}b\]
(15)さきに文字と式の計算をします。
\[\frac{48*52-77*19}{19*52}b - \frac{97}{50}b=\]
計算すると、つぎの式になります。
\[\frac{1033*50-97*988}{988*50}b=\]
約分:計算式1は約分はありません。、計算式2は2。

さらに計算すると、つぎの式になります。これに「b=-2 」を代入します。
\[\frac{51057}{24700}b\]
(16)さきに文字と式の計算をします。
\[\frac{77*2-77*69}{69*2}b - \frac{83}{50}b=\]
計算すると、つぎの式になります。
\[\frac{-5159*50-83*138}{138*50}b=\]
約分:計算式1は約分はありません。、計算式2は4。

さらに計算すると、つぎの式になります。これに「b=-9 」を代入します。
\[\frac{65474}{1725}b\]
(17)さきに文字と式の計算をします。
\[\frac{23*44-65*20}{20*44}b - \frac{11}{9}b=\]
計算すると、つぎの式になります。
\[\frac{-18*9-11*55}{55*9}b=\]
約分:計算式1は8、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「b=-9 」を代入します。
\[\frac{1391}{990}b\]
(18)さきに文字と式の計算をします。
\[\frac{4*23-12*9}{9*23}b - \frac{56}{69}b=\]
計算すると、つぎの式になります。
\[\frac{16*69-56*-207}{-207*69}b=\]
約分:計算式1は約分はありません。、計算式2は69。

さらに計算すると、つぎの式になります。これに「b=5 」を代入します。
\[\frac{32}{207}b\]
(19)さきに文字と式の計算をします。
\[\frac{43*9-10*55}{55*9}b - \frac{48}{43}b=\]
計算すると、つぎの式になります。
\[\frac{163*43-48*-495}{-495*43}b=\]
約分:計算式1は約分はありません。、計算式2は約分はありません。。

さらに計算すると、つぎの式になります。これに「b=3 」を代入します。
\[\frac{16531}{21285}b\]
(20)さきに文字と式の計算をします。
\[\frac{19*79-22*18}{18*79}b - \frac{51}{40}b=\]
計算すると、つぎの式になります。
\[\frac{1105*40-51*1422}{1422*40}b=\]
約分:計算式1は約分はありません。、計算式2は2。

さらに計算すると、つぎの式になります。これに「b=4 」を代入します。
\[\frac{1679}{28440}b\]

係数が分数の文字のたし算とひき算(3項)(代入)(解答)

人は誰しもケアレスミスなどの計算ミスをするものです。ミスはどうやっても防げないというひともいますが、それは間違いです。計算ミスを防ぐ方法はあります。
それは、繰り返し問題を解くだけです。何度も問題を解くと慣れてたとえ緊張しても正確に計算できるようになります。
シンプルな方法ですが、効果的です。地道でつらい作業ですが、何度も繰り返し問題を解きましょう。

(1)\[\frac{21443}{2964}\]

(2)\[- \frac{11790}{13547}\]

(3)\[- \frac{26120}{1599}\]

(4)\[- \frac{30364}{1275}\]

(5)\[- \frac{653}{1608}\]

(6)\[- \frac{2513}{480}\]

(7)\[- \frac{9551}{1932}\]

(8)\[- \frac{49961}{4420}\]

(9)\[\frac{16763}{588}\]

(10)\[\frac{401}{152}\]

(11)\[- \frac{769}{240}\]

(12)\[- \frac{841}{483}\]

(13)\[\frac{8975}{663}\]

(14)\[- \frac{309351}{22436}\]

(15)\[- \frac{51057}{12350}\]

(16)\[- \frac{196422}{575}\]

(17)\[- \frac{1391}{110}\]

(18)\[\frac{160}{207}\]

(19)\[\frac{16531}{7095}\]

(20)\[\frac{1679}{7110}\]

「数学を勉強するすべての人へ」のトップページ