文字式の同類項の計算11(文字の係数は分数や整数)

こんにちは、『0からやりなおす中学数学の計算問題』(総合科学出版)などの著書がある石崎です。『基本にカエル英語の本』という著書もあります。いきなりですが、同類項の問題を見るだけでウッとくるひともいるかもしれません。
ひと手間かけるだけで解きやすくなります。たとえばxには〇印、yには△印をつけるというように、同じ文字に同じ印をつけます。
そうするだけで問題を解けるだけではなくてケアレスミスも防げます。
同類項の問題に慣れていないうちは特にお勧めです。

<はじめてのひとへ>
・数式の表示は、MathJaxを利用しています。数式を表示させるにはネット接続とJavascriptを「オン」にすることが必要です。
・このページは印刷できます。詳しい方法は、計算問題を印刷する方法をご覧になってください。
・計算のしかたを工夫すれば楽に計算できるケースもあります。計算式はあくまで目安ですので、あらかじめご了承ください。
計算問題のページには、ほかにも、たくさん計算問題があります。

<出題内容>
・カテゴリ:中学数学 式と計算
・種類:同類項の計算11
・文字式:係数が分数と整数の文字からなる文字式
・問題数:20問

スポンサード リンク


係数が分数や整数の文字からなる文字式の同類項の計算11(問題)

(1)
\begin{eqnarray}-1-8bcd+\frac{4}{3}bcd+\frac{5}{6}+5bcd\end{eqnarray}\begin{eqnarray}+a^2-a^2+a^2\end{eqnarray}

(2)
\begin{eqnarray}3+5bcd+\frac{7}{5}bcd-\frac{1}{5}a^2-\frac{1}{5}bcd+5a^2\end{eqnarray}\begin{eqnarray}-\frac{3}{8}-\frac{5}{9}a^2\end{eqnarray}

(3)
\begin{eqnarray}\frac{5}{2}bcd-2a^2-bcd+2bcd-2+\frac{2}{3}a^2\end{eqnarray}\begin{eqnarray}-5-\frac{8}{3}a^2\end{eqnarray}

(4)
\begin{eqnarray}-\frac{1}{3}bcd+\frac{9}{5}-a^2+2bcd-\frac{8}{3}bcd\end{eqnarray}\begin{eqnarray}+4a^2-3a^2-\frac{7}{9}\end{eqnarray}

(5)
\begin{eqnarray}-5-\frac{2}{7}a^2-\frac{6}{7}a^2-2-7bcd\end{eqnarray}\begin{eqnarray}-\frac{6}{7}a^2+4bcd+\frac{5}{6}bcd\end{eqnarray}

(6)
\begin{eqnarray}\frac{1}{3}a^2-\frac{2}{3}a^2-8-9+\frac{7}{4}bcd-\frac{3}{5}a^2\end{eqnarray}\begin{eqnarray}+\frac{1}{7}bcd-5bcd\end{eqnarray}

(7)
\begin{eqnarray}4a^2+7-7bcd+8bcd+4+\frac{1}{2}a^2\end{eqnarray}\begin{eqnarray}-\frac{1}{2}a^2-\frac{1}{2}bcd\end{eqnarray}

(8)
\begin{eqnarray}-\frac{1}{3}bcd+\frac{1}{4}a^2-\frac{2}{7}a^2+1-\frac{7}{8}\end{eqnarray}\begin{eqnarray}+\frac{8}{9}bcd-\frac{3}{2}a^2+\frac{3}{4}bcd\end{eqnarray}

(9)
\begin{eqnarray}9a^2-4bcd-3bcd-3a^2-\frac{2}{3}+\frac{5}{6}a^2\end{eqnarray}\begin{eqnarray}+\frac{8}{7}-\frac{1}{9}bcd\end{eqnarray}

(10)
\begin{eqnarray}-5bcd-\frac{4}{3}a^2+3a^2-7bcd-\frac{1}{2}a^2\end{eqnarray}\begin{eqnarray}-3-bcd-\frac{1}{5}\end{eqnarray}

(11)
\begin{eqnarray}\frac{4}{3}bcd-6a^2-\frac{7}{5}bcd+\frac{1}{6}-\frac{3}{2}a^2-8bcd\end{eqnarray}\begin{eqnarray}-\frac{7}{6}a^2+\frac{7}{5}\end{eqnarray}

(12)
\begin{eqnarray}\frac{9}{2}-8a^2-\frac{7}{8}a^2-8a^2-\frac{1}{3}bcd-\frac{1}{4}\end{eqnarray}\begin{eqnarray}-\frac{8}{9}bcd-\frac{2}{3}bcd\end{eqnarray}

(13)
\begin{eqnarray}\frac{1}{3}bcd+7bcd-6bcd+\frac{9}{8}a^2+\frac{9}{2}a^2+\frac{1}{3}\end{eqnarray}\begin{eqnarray}+\frac{1}{2}-a^2\end{eqnarray}

(14)
\begin{eqnarray}-4bcd-\frac{5}{6}bcd+3a^2-6bcd+1\end{eqnarray}\begin{eqnarray}-2a^2-\frac{9}{7}a^2-8\end{eqnarray}

(15)
\begin{eqnarray}-9a^2-9+\frac{5}{7}bcd+6bcd+\frac{1}{2}a^2\end{eqnarray}\begin{eqnarray}-6bcd+\frac{4}{7}-9a^2\end{eqnarray}

(16)
\begin{eqnarray}-\frac{1}{3}+4a^2+\frac{3}{7}a^2-\frac{1}{2}-6a^2\end{eqnarray}\begin{eqnarray}+\frac{1}{2}bcd-\frac{1}{2}bcd-\frac{7}{3}bcd\end{eqnarray}

(17)
\begin{eqnarray}6+3a^2+6-2bcd-6bcd-\frac{5}{7}a^2\end{eqnarray}\begin{eqnarray}+\frac{1}{3}a^2-\frac{6}{7}bcd\end{eqnarray}

(18)
\begin{eqnarray}-\frac{4}{3}a^2-7a^2+4+\frac{1}{3}bcd-\frac{1}{3}bcd\end{eqnarray}\begin{eqnarray}+\frac{7}{2}-\frac{2}{7}a^2+\frac{7}{9}bcd\end{eqnarray}

(19)
\begin{eqnarray}-7a^2+4+\frac{9}{8}bcd+\frac{7}{4}a^2+8bcd\end{eqnarray}\begin{eqnarray}-\frac{9}{5}+\frac{1}{4}a^2+9bcd\end{eqnarray}

(20)
\begin{eqnarray}9+\frac{5}{8}a^2+2bcd-7+2bcd-\frac{5}{4}a^2\end{eqnarray}\begin{eqnarray}+8bcd-5a^2\end{eqnarray}

係数が分数や整数の文字からなる文字式の同類項の計算11(解きかた)

(1)数式を整理すると、つぎのようになります。
\begin{eqnarray}(-1+1+1)a^2-3bcd+\frac{+4}{3}bcd+\frac{-1*6+5*1}{1*6}\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}1a^2+\frac{-3*3+4*1}{1 * 3}bcd+\frac{-1}{6}\end{eqnarray}

(2)数式を整理すると、つぎのようになります。
\begin{eqnarray}\frac{(-1)*9+(-5)*5}{5*9}a^2+5a^2+\frac{7*5+(-1)*5}{5*5}bcd+5bcd+\frac{-3*1+3*8}{8*1}\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}\frac{(-34)*1+5*45}{45*1}a^2+\frac{30*1+5*25}{25*1}bcd+\frac{21}{8}\end{eqnarray}

(3)数式を整理すると、つぎのようになります。
\begin{eqnarray}\frac{2*3+(-8)*3}{3*3}a^2-2a^2+bcd+\frac{+5}{2}bcd-5-2\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}\frac{(-18)*1-2*9}{9*1}a^2+\frac{1*2+5*1}{1 * 2}bcd-7\end{eqnarray}

(4)数式を整理すると、つぎのようになります。
\begin{eqnarray}(4-1-3)a^2+\frac{(-1)*3+(-8)*3}{3*3}bcd+2bcd+\frac{-7*5+9*9}{9*5}\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}0a^2+\frac{(-27)*1+2*9}{9*1}bcd+\frac{46}{45}\end{eqnarray}

(5)数式を整理すると、つぎのようになります。
\begin{eqnarray}\frac{(-6)*7+(-2)*7}{7*7}a^2+\frac{(-6)}{7}a^2-3bcd+\frac{+5}{6}bcd-5-2\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}\frac{(-56)*7+(-6)*49}{49*7}a^2+\frac{-3*6+5*1}{1 * 6}bcd-7\end{eqnarray}

(6)数式を整理すると、つぎのようになります。
\begin{eqnarray}\frac{(-3)*3+1*5}{5*3}a^2+\frac{(-2)}{3}a^2+\frac{1*4+7*7}{7*4}bcd-5bcd-8-9\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}\frac{(-4)*3+(-2)*15}{15*3}a^2+\frac{53*1-5*28}{28*1}bcd-17\end{eqnarray}

(7)数式を整理すると、つぎのようになります。
\begin{eqnarray}\frac{1*2+(-1)*2}{2*2}a^2+4a^2+bcd+\frac{-1}{2}bcd+7+4\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}4a^2+\frac{1*2-1*1}{1 * 2}bcd+11\end{eqnarray}

(8)数式を整理すると、つぎのようになります。
\begin{eqnarray}\frac{(-2)*2+(-3)*7}{7*2}a^2+\frac{1}{4}a^2+\frac{(-1)*9+8*3}{3*9}bcd+\frac{3}{4}bcd+\frac{-7*1+1*8}{8*1}\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}\frac{(-25)*4+1*14}{14*4}a^2+\frac{15*4+3*27}{27*4}bcd+\frac{1}{8}\end{eqnarray}

(9)数式を整理すると、つぎのようになります。
\begin{eqnarray}6a^2+\frac{+5}{6}a^2-7bcd+\frac{-1}{9}bcd+\frac{8*3-2*7}{7*3}\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}\frac{6*6+5*1}{1 * 6}a^2+\frac{-7*9-1*1}{1 * 9}bcd+\frac{10}{21}\end{eqnarray}

(10)数式を整理すると、つぎのようになります。
\begin{eqnarray}\frac{(-4)*2+(-1)*3}{3*2}a^2+3a^2+(-7-5-1)bcd+\frac{-3*5-1*1}{1*5}\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}\frac{(-11)*1+3*6}{6*1}a^2-13bcd+\frac{-16}{5}\end{eqnarray}

(11)数式を整理すると、つぎのようになります。
\begin{eqnarray}\frac{(-7)*2+(-3)*6}{6*2}a^2-6a^2+\frac{(-7)*3+4*5}{5*3}bcd-8bcd+\frac{1*5+7*6}{6*5}\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}\frac{(-32)*1-6*12}{12*1}a^2+\frac{(-1)*1-8*15}{15*1}bcd+\frac{47}{30}\end{eqnarray}

(12)数式を整理すると、つぎのようになります。
\begin{eqnarray}-16a^2+\frac{-7}{8}a^2+\frac{(-2)*3+(-1)*3}{3*3}bcd+\frac{(-8)}{9}bcd+\frac{-1*2+9*4}{4*2}\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}\frac{-16*8-7*1}{1 * 8}a^2+\frac{(-9)*9+(-8)*9}{9*9}bcd+\frac{34}{8}\end{eqnarray}

(13)数式を整理すると、つぎのようになります。
\begin{eqnarray}\frac{9*8+9*2}{2*8}a^2-1a^2+bcd+\frac{+1}{3}bcd+\frac{1*2+1*3}{3*2}\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}\frac{90*1-1*16}{16*1}a^2+\frac{1*3+1*1}{1 * 3}bcd+\frac{5}{6}\end{eqnarray}

(14)数式を整理すると、つぎのようになります。
\begin{eqnarray}a^2+\frac{-9}{7}a^2-10bcd+\frac{-5}{6}bcd-8+1\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}\frac{1*7-9*1}{1 * 7}a^2+\frac{-10*6-5*1}{1 * 6}bcd-7\end{eqnarray}

(15)数式を整理すると、つぎのようになります。
\begin{eqnarray}-18a^2+\frac{+1}{2}a^2+\frac{5}{7}bcd+\frac{4*1-9*7}{7*1}\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}\frac{-18*2+1*1}{1 * 2}a^2+\frac{5}{7}bcd+\frac{-59}{7}\end{eqnarray}

(16)数式を整理すると、つぎのようになります。
\begin{eqnarray}-2a^2+\frac{+3}{7}a^2+\frac{(-7)*2+(-1)*3}{3*2}bcd+\frac{1}{2}bcd+\frac{-1*3-1*2}{2*3}\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}\frac{-2*7+3*1}{1 * 7}a^2+\frac{(-17)*2+1*6}{6*2}bcd+\frac{-5}{6}\end{eqnarray}

(17)数式を整理すると、つぎのようになります。
\begin{eqnarray}\frac{(-5)*3+1*7}{7*3}a^2+3a^2-8bcd+\frac{-6}{7}bcd+6+6\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}\frac{(-8)*1+3*21}{21*1}a^2+\frac{-8*7-6*1}{1 * 7}bcd+12\end{eqnarray}

(18)数式を整理すると、つぎのようになります。
\begin{eqnarray}\frac{(-2)*3+(-4)*7}{7*3}a^2-7a^2+\frac{1*9+7*3}{3*9}bcd+\frac{(-1)}{3}bcd+\frac{7*1+4*2}{2*1}\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}\frac{(-34)*1-7*21}{21*1}a^2+\frac{30*3+(-1)*27}{27*3}bcd+\frac{15}{2}\end{eqnarray}

(19)数式を整理すると、つぎのようになります。
\begin{eqnarray}\frac{7*4+1*4}{4*4}a^2-7a^2+17bcd+\frac{+9}{8}bcd+\frac{-9*1+4*5}{5*1}\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}\frac{32*1-7*16}{16*1}a^2+\frac{17*8+9*1}{1 * 8}bcd+\frac{11}{5}\end{eqnarray}

(20)数式を整理すると、つぎのようになります。
\begin{eqnarray}\frac{5*4+(-5)*8}{8*4}a^2-5a^2+(2+2+8)bcd-7+9\end{eqnarray}

さらに計算すると、つぎのようになります。
\begin{eqnarray}\frac{(-20)*1-5*32}{32*1}a^2+12bcd+2\end{eqnarray}

係数が分数や整数の文字からなる文字式の同類項の計算11(解答)

解きっぱなしはよくありません。不正解の問題をそのままにせず、なぜ間違えたのかを理解することが重要です。めんどくさいと思うひとは多いのですが、こうしないといつまで経っても同じところで間違えてしまいます。
ただ、間違いの理由がわかっても、同じ間違いを繰り返してしまうものです。そこでつぎに不正解だった問題を再び解きましょう。そして、正解するまで、これを繰り返します。正解するだろうと思うかもしれませんが不正解になるものですよ。

(1)
\begin{eqnarray}a^2-\frac{5}{3}bcd+\frac{1}{-6}\end{eqnarray}

(2)
\begin{eqnarray}\frac{191}{45}a^2+\frac{31}{5}bcd+\frac{21}{8}\end{eqnarray}

(3)
\begin{eqnarray}-\frac{4}{1}a^2+\frac{7}{2}bcd-7\end{eqnarray}

(4)
\begin{eqnarray}0-\frac{1}{1}bcd+\frac{46}{45}\end{eqnarray}

(5)
\begin{eqnarray}-\frac{2}{1}a^2-\frac{13}{6}bcd-7\end{eqnarray}

(6)
\begin{eqnarray}-\frac{14}{15}a^2-\frac{87}{28}bcd-17\end{eqnarray}

(7)
\begin{eqnarray}4a^2+\frac{1}{2}bcd+11\end{eqnarray}

(8)
\begin{eqnarray}-\frac{43}{28}a^2+\frac{47}{36}bcd+\frac{1}{8}\end{eqnarray}

(9)
\begin{eqnarray}\frac{41}{6}a^2-\frac{64}{9}bcd+\frac{10}{21}\end{eqnarray}

(10)
\begin{eqnarray}\frac{7}{6}a^2-13bcd+ - \frac{16}{5}\end{eqnarray}

(11)
\begin{eqnarray}-\frac{26}{3}a^2-\frac{121}{15}bcd+\frac{47}{30}\end{eqnarray}

(12)
\begin{eqnarray}-\frac{135}{8}a^2-\frac{17}{9}bcd+\frac{17}{4}\end{eqnarray}

(13)
\begin{eqnarray}\frac{37}{8}a^2+\frac{4}{3}bcd+\frac{5}{6}\end{eqnarray}

(14)
\begin{eqnarray}-\frac{2}{7}a^2-\frac{65}{6}bcd-7\end{eqnarray}

(15)
\begin{eqnarray}-\frac{35}{2}a^2+\frac{5}{7}bcd-\frac{59}{7}\end{eqnarray}

(16)
\begin{eqnarray}-\frac{11}{7}a^2-\frac{7}{3}bcd+ - \frac{5}{6}\end{eqnarray}

(17)
\begin{eqnarray}\frac{55}{21}a^2-\frac{62}{7}bcd+12\end{eqnarray}

(18)
\begin{eqnarray}-\frac{181}{21}a^2+\frac{7}{9}bcd+\frac{15}{2}\end{eqnarray}

(19)
\begin{eqnarray}-\frac{5}{1}a^2+\frac{145}{8}bcd+\frac{11}{5}\end{eqnarray}

(20)
\begin{eqnarray}-\frac{45}{8}a^2+12bcd+2\end{eqnarray}

「数学を勉強するすべての人へ」のトップページ