文字の係数が分数のときのひき算(2項)
どうも、『5つのパターンで9割わかる!中学数学の文章題』(総合科学出版)などの著書がある石崎です。ほかにも、さまざまなジャンルの著書があります。さて、変数は、たし算やひき算といえども難しく感じるかもしれません。
はじめのうちはそのように思うかもしれませんが、繰り返し変数の問題を解いているうちに慣れてきます。というわけで、今日も、はりきって、文字と式のたし算とひき算の計算問題を解きましょう。
変数を見ると頭痛がしてつらいかもしれませんが、今だけなので、がんばりましょう。挫折せず数学の学習をしていると、そのうちいいことがありますよ。
<はじめてのひとへ>
・数式の表示は、MathJaxを利用しています。数式を表示させるにはネット接続とJavascriptを「オン」にすることが必要です。
・このページは印刷できます。詳しい方法は、計算問題を印刷する方法をご覧になってください。
・計算する前に約分するなど、計算のしかたを工夫すれば楽に計算できるケースもあります。計算式はあくまで目安ですので、あらかじめご了承ください。
・計算問題のページには、ほかにも、たくさん計算問題があります。
<出題内容>
・種類:文字の係数が分数のときのひき算(2項)(中学数学)
・問題数:20問
スポンサード リンク
文字の係数が分数のときのひき算(2項)の計算問題を解こう!
(1)
\[\frac{4}{37}x - \frac{1}{21}x=\]
(2)
\[\frac{1}{56}x - \frac{1}{28}x=\]
(3)
\[\frac{9}{85}x - \frac{2}{99}x=\]
(4)
\[\frac{1}{63}x - \frac{4}{87}x=\]
(5)
\[\frac{1}{20}x - \frac{1}{10}x=\]
(6)
\[\frac{8}{75}x - \frac{5}{88}x=\]
(7)
\[\frac{3}{13}x - \frac{7}{51}x=\]
(8)
\[\frac{4}{15}x - \frac{4}{83}x=\]
(9)
\[\frac{1}{22}x - \frac{3}{89}x=\]
(10)
\[\frac{1}{11}x - \frac{1}{26}x=\]
(11)
\[\frac{2}{5}x - \frac{5}{23}x=\]
(12)
\[\frac{2}{21}x - \frac{4}{29}x=\]
(13)
\[\frac{7}{97}x - \frac{6}{55}x=\]
(14)
\[\frac{1}{5}x - \frac{1}{10}x=\]
(15)
\[\frac{8}{93}x - \frac{8}{49}x=\]
(16)
\[\frac{3}{76}x - \frac{4}{77}x=\]
(17)
\[\frac{1}{14}x - \frac{1}{19}x=\]
(18)
\[\frac{8}{61}x - \frac{7}{37}x=\]
(19)
\[\frac{4}{43}x - \frac{3}{37}x=\]
(20)
\[\frac{1}{4}x - \frac{3}{4}x=\]
文字の係数が分数のときのひき算(2項)の計算問題(解きかた)
(1)
\[\frac{4*21-1*37}{37*21}x=\]約分:約分はありません。
(2)
\[\frac{1*28-1*56}{56*28}x=\]約分:28
(3)
\[\frac{9*99-2*85}{85*99}x=\]約分:約分はありません。
(4)
\[\frac{1*87-4*63}{63*87}x=\]約分:3
(5)
\[\frac{1*10-1*20}{20*10}x=\]約分:10
(6)
\[\frac{8*88-5*75}{75*88}x=\]約分:約分はありません。
(7)
\[\frac{3*51-7*13}{13*51}x=\]約分:約分はありません。
(8)
\[\frac{4*83-4*15}{15*83}x=\]約分:約分はありません。
(9)
\[\frac{1*89-3*22}{22*89}x=\]約分:約分はありません。
(10)
\[\frac{1*26-1*11}{11*26}x=\]約分:約分はありません。
(11)
\[\frac{2*23-5*5}{5*23}x=\]約分:約分はありません。
(12)
\[\frac{2*29-4*21}{21*29}x=\]約分:約分はありません。
(13)
\[\frac{7*55-6*97}{97*55}x=\]約分:約分はありません。
(14)
\[\frac{1*10-1*5}{5*10}x=\]約分:5
(15)
\[\frac{8*49-8*93}{93*49}x=\]約分:約分はありません。
(16)
\[\frac{3*77-4*76}{76*77}x=\]約分:約分はありません。
(17)
\[\frac{1*19-1*14}{14*19}x=\]約分:約分はありません。
(18)
\[\frac{8*37-7*61}{61*37}x=\]約分:約分はありません。
(19)
\[\frac{4*37-3*43}{43*37}x=\]約分:約分はありません。
(20)
\[\frac{1-3}{4}x=\]約分:2
文字の係数が分数のときのひき算(2項)の計算問題(解答)
ケアレスミスなどの計算ミスはしたくないですね。計算ミスを防ぎましょう。どのようにすれば計算ミスを減らすことができるのでしょうか。
それは、繰り返し問題を解くだけです。何度も問題を解くと、たとえ緊張しても正確に計算できるようになります。
単純な方法ですが、効果的です。ケアレスミスをなくすだけで数学の成績はあがるので、何度も繰り返し問題を解きましょう。
ちなみに、塾にて小テストで繰り返し同じような問題を解かせたときの経験ですが、生徒のケアレスミスをゼロにはできませんでした。ただ、繰り返し問題を解かせれば解かせるほど、ケアレスミスは減りました。やはり効果があるようです。
(1)
\[\frac{47}{777}x\]
(2)
\[-\frac{1}{56}x\]
(3)
\[\frac{721}{8415}x\]
(4)
\[-\frac{55}{1827}x\]
(5)
\[-\frac{1}{20}x\]
(6)
\[\frac{329}{6600}x\]
(7)
\[\frac{62}{663}x\]
(8)
\[\frac{272}{1245}x\]
(9)
\[\frac{23}{1958}x\]
(10)
\[\frac{15}{286}x\]
(11)
\[\frac{21}{115}x\]
(12)
\[-\frac{26}{609}x\]
(13)
\[-\frac{197}{5335}x\]
(14)
\[\frac{1}{10}x\]
(15)
\[-\frac{352}{4557}x\]
(16)
\[-\frac{73}{5852}x\]
(17)
\[\frac{5}{266}x\]
(18)
\[-\frac{131}{2257}x\]
(19)
\[\frac{19}{1591}x\]
(20)
\[-\frac{1}{2}x\]