たし算(2項)

『0からやりなおす中学数学の計算問題』『5つのパターンで9割わかる!中学数学の文章題』(総合科学出版)などの著書がある石崎です。ほかにも、さまざまなジャンルの著書があります。
さて、平方根の計算をややこしいと感じるのはあなただけではありません。
でも、小数の計算ができるようになるには、繰り返し小数の計算問題を問題を解くしかありません。というわけで、今回も、地道に平方根のたし算とひき算の計算問題を解きましょう。
ルートは単調でつらいかもしれませんが、今だけなので、がんばりましょう。
そのうち、すらすら平方根の計算ができるようになりますよ。。

<はじめてのひとへ>
・数式の表示は、MathJaxを利用しています。数式を表示させるにはネット接続とJavascriptを「オン」にすることが必要です。
・このページは印刷できます。詳しい方法は、計算問題を印刷する方法をご覧になってください。
・計算のしかたを工夫すれば楽に計算できるケースもあります。計算式はあくまで目安ですので、あらかじめご了承ください。
計算問題のページには、ほかにも、たくさん計算問題があります。

<出題内容>
・テーマ:平方根のたし算(2項)(中学数学)
・問題数:15問

スポンサード リンク


平方根のたし算(2項)の問題を解こう!

(1)つぎの平方根の計算をしてください。
\[\sqrt{28}+\sqrt{63}\]

(2)つぎの平方根の計算をしてください。
\[\sqrt{22}+\sqrt{88}\]

(3)つぎの平方根の計算をしてください。
\[\sqrt{56}+\sqrt{14}\]

(4)つぎの平方根の計算をしてください。
\[\sqrt{27}+\sqrt{48}\]

(5)つぎの平方根の計算をしてください。
\[\sqrt{54}+\sqrt{96}\]

(6)つぎの平方根の計算をしてください。
\[\sqrt{16}+\sqrt{25}\]

(7)つぎの平方根の計算をしてください。
\[\sqrt{40}+\sqrt{10}\]

(8)つぎの平方根の計算をしてください。
\[\sqrt{56}+\sqrt{14}\]

(9)つぎの平方根の計算をしてください。
\[\sqrt{54}+\sqrt{96}\]

(10)つぎの平方根の計算をしてください。
\[\sqrt{14}+\sqrt{56}\]

(11)つぎの平方根の計算をしてください。
\[\sqrt{50}+\sqrt{72}\]

(12)つぎの平方根の計算をしてください。
\[\sqrt{12}+\sqrt{48}\]

(13)つぎの平方根の計算をしてください。
\[\sqrt{25}+\sqrt{36}\]

(14)つぎの平方根の計算をしてください。
\[\sqrt{20}+\sqrt{45}\]

(15)つぎの平方根の計算をしてください。
\[\sqrt{16}+\sqrt{49}\]

平方根のたし算(2項)(計算式)

(1)つぎのように計算できます。
\[\sqrt{2^2×7}+\sqrt{3^2×7}\]
さらに計算するとつぎのようになります。\[2\sqrt{7}+3\sqrt{7}\]

(2)つぎのように計算できます。
\[\sqrt{2×11}+\sqrt{2^3×11}\]
さらに計算するとつぎのようになります。\[\sqrt{22}+2\sqrt{22}\]

(3)つぎのように計算できます。
\[\sqrt{2^3×7}+\sqrt{2×7}\]
さらに計算するとつぎのようになります。\[2\sqrt{14}+\sqrt{14}\]

(4)つぎのように計算できます。
\[\sqrt{3^3}+\sqrt{2^4×3}\]
さらに計算するとつぎのようになります。\[3\sqrt{3}+4\sqrt{3}\]

(5)つぎのように計算できます。
\[\sqrt{2×3^3}+\sqrt{2^5×3}\]
さらに計算するとつぎのようになります。\[3\sqrt{6}+4\sqrt{6}\]

(6)つぎのように計算できます。
\[\sqrt{2^4}+\sqrt{5^2}\]
さらに計算するとつぎのようになります。\[4+5\]

(7)つぎのように計算できます。
\[\sqrt{2^3×5}+\sqrt{2×5}\]
さらに計算するとつぎのようになります。\[2\sqrt{10}+\sqrt{10}\]

(8)つぎのように計算できます。
\[\sqrt{2^3×7}+\sqrt{2×7}\]
さらに計算するとつぎのようになります。\[2\sqrt{14}+\sqrt{14}\]

(9)つぎのように計算できます。
\[\sqrt{2×3^3}+\sqrt{2^5×3}\]
さらに計算するとつぎのようになります。\[3\sqrt{6}+4\sqrt{6}\]

(10)つぎのように計算できます。
\[\sqrt{2×7}+\sqrt{2^3×7}\]
さらに計算するとつぎのようになります。\[\sqrt{14}+2\sqrt{14}\]

(11)つぎのように計算できます。
\[\sqrt{2×5^2}+\sqrt{2^3×3^2}\]
さらに計算するとつぎのようになります。\[5\sqrt{2}+6\sqrt{2}\]

(12)つぎのように計算できます。
\[\sqrt{2^2×3}+\sqrt{2^4×3}\]
さらに計算するとつぎのようになります。\[2\sqrt{3}+4\sqrt{3}\]

(13)つぎのように計算できます。
\[\sqrt{5^2}+\sqrt{2^2×3^2}\]
さらに計算するとつぎのようになります。\[5+6\]

(14)つぎのように計算できます。
\[\sqrt{2^2×5}+\sqrt{3^2×5}\]
さらに計算するとつぎのようになります。\[2\sqrt{5}+3\sqrt{5}\]

(15)つぎのように計算できます。
\[\sqrt{2^4}+\sqrt{7^2}\]
さらに計算するとつぎのようになります。\[4+7\]

平方根のたし算(2項)(解答)

解いて答え合わせをしてそれで終わりではいけません。不正解の問題があればそのままにせず、なぜ間違えたのかをしっかり理解しましょう。面倒だと感じるひとは多いのですが、こうしないと計算力はつきません。
ただ、間違いの理由がわかっても、同じ間違いを繰り返してしまうものです。そこでつぎに不正解だった問題をもう一度解きましょう。そして、正解するまで、これを繰り返すといいでしょう。

(1)つぎになります。
\[5\sqrt{7}\]

(2)つぎになります。
\[3\sqrt{22}\]

(3)つぎになります。
\[3\sqrt{14}\]

(4)つぎになります。
\[7\sqrt{3}\]

(5)つぎになります。
\[7\sqrt{6}\]

(6)つぎになります。
\[9\]

(7)つぎになります。
\[3\sqrt{10}\]

(8)つぎになります。
\[3\sqrt{14}\]

(9)つぎになります。
\[7\sqrt{6}\]

(10)つぎになります。
\[3\sqrt{14}\]

(11)つぎになります。
\[11\sqrt{2}\]

(12)つぎになります。
\[6\sqrt{3}\]

(13)つぎになります。
\[11\]

(14)つぎになります。
\[5\sqrt{5}\]

(15)つぎになります。
\[11\]

「数学を勉強するすべての人へ」のトップページ