文字の累乗の計算問題(文字のかけ算で係数は整数と分数)
こんにちは、『0からやりなおす中学数学の計算問題』『5つのパターンで9割わかる!中学数学の文章題』(総合科学出版)などの著書がある石崎です。さて、どうすれば算数や数学が得点源になると思いますか。
数学の基礎は計算力といっても過言ではありません。正確に計算できるようになるまで、ひたすら計算問題を解きましょう。というわけで、今回も、地道に累乗の計算問題を解きましょう。
数字を見るだけで頭痛がするかもしれませんが、今だけなので、がんばりましょう。いつの日か、計算するのが楽しくなるかもしれませんから。
<はじめてのひとへ>
・数式の表示は、MathJaxを利用しています。数式を表示させるにはネット接続とJavascriptを「オン」にすることが必要です。
・このページは印刷できます。詳しい方法は、計算問題を印刷する方法をご覧になってください。
・計算する前に約分するなど、計算のしかたを工夫すれば楽に計算できるケースもあります。計算式はあくまで目安ですので、あらかじめご了承ください。
・計算問題のページには、ほかにも、たくさん計算問題があります。
<出題内容>
・テーマ:文字の累乗(中学数学)
・種類:文字のかけ算で係数は整数と分数
・問題数:15問
スポンサード リンク
文字の累乗の計算問題を解こう!
(1)つぎの文字式を累乗の形にしてください。
\begin{eqnarray}9z×3x×x×(-\frac{23}{27}y)\end{eqnarray}\begin{eqnarray}×(-3y)×(-3y)×\frac{32}{37}x×y×4y\end{eqnarray}
(2)つぎの文字式を累乗の形にしてください。
\begin{eqnarray}(-8z)×(-\frac{34}{11}x)×y×\frac{29}{34}z\end{eqnarray}\begin{eqnarray}×(-\frac{70}{31}x)×x\end{eqnarray}
(3)つぎの文字式を累乗の形にしてください。
\begin{eqnarray}3z×(-\frac{5}{7}x)×(-x)×z\end{eqnarray}\begin{eqnarray}×\frac{50}{31}z×y×(-y)\end{eqnarray}
(4)つぎの文字式を累乗の形にしてください。
\begin{eqnarray}(-4x)×y×\frac{21}{41}x×(-y)\end{eqnarray}\begin{eqnarray}×8z×(-x)\end{eqnarray}
(5)つぎの文字式を累乗の形にしてください。
\begin{eqnarray}(-2x)×(-z)×4z×z\end{eqnarray}\begin{eqnarray}×(-\frac{74}{87}y)×8x×\frac{50}{67}x\end{eqnarray}
(6)つぎの文字式を累乗の形にしてください。
\begin{eqnarray}y×z×(-x)×(-6y)\end{eqnarray}\begin{eqnarray}×(-z)×\frac{16}{69}x×(-7y)×(-9z)×(-\frac{7}{15}x)\end{eqnarray}
(7)つぎの文字式を累乗の形にしてください。
\begin{eqnarray}(-\frac{47}{16}z)×(-\frac{61}{13}z)×(-y)×4z\end{eqnarray}\begin{eqnarray}×9z×(-8x)\end{eqnarray}
(8)つぎの文字式を累乗の形にしてください。
\begin{eqnarray}z×\frac{8}{11}y×(-\frac{14}{9}z)×(-4y)\end{eqnarray}\begin{eqnarray}×(-y)×z×(-z)\end{eqnarray}
(9)つぎの文字式を累乗の形にしてください。
\begin{eqnarray}(-y)×x×x×z\end{eqnarray}\begin{eqnarray}×(-\frac{19}{27}z)×6z×(-y)\end{eqnarray}
(10)つぎの文字式を累乗の形にしてください。
\begin{eqnarray}(-4x)×(-\frac{2}{3}z)×(-\frac{37}{85}z)×(-z)\end{eqnarray}\begin{eqnarray}×(-\frac{13}{30}y)×5z×z\end{eqnarray}
(11)つぎの文字式を累乗の形にしてください。
\begin{eqnarray}(-\frac{5}{9}y)×\frac{58}{33}y×(-7y)×z\end{eqnarray}\begin{eqnarray}×8y×z×8x\end{eqnarray}
(12)つぎの文字式を累乗の形にしてください。
\begin{eqnarray}2z×(-\frac{43}{40}y)×(-y)×(-\frac{41}{42}x)\end{eqnarray}\begin{eqnarray}×\frac{18}{19}x×x×x\end{eqnarray}
(13)つぎの文字式を累乗の形にしてください。
\begin{eqnarray}\frac{10}{11}x×\frac{71}{38}y×(-\frac{34}{49}x)×6x\end{eqnarray}\begin{eqnarray}×2x×x×9z×7z×(-9x)\end{eqnarray}
(14)つぎの文字式を累乗の形にしてください。
\begin{eqnarray}(-z)×(-\frac{16}{5}y)×\frac{37}{70}z×(-8x)\end{eqnarray}\begin{eqnarray}×3x×(-3y)×(-8x)×7z\end{eqnarray}
(15)つぎの文字式を累乗の形にしてください。
\begin{eqnarray}z×(-7y)×(-\frac{11}{83}x)×8y\end{eqnarray}\begin{eqnarray}×(-y)×(-\frac{5}{16}x)×2z\end{eqnarray}
文字の累乗の計算問題(解答)
人は誰しもケアレスミスなどの計算ミスをするものです。特に緊張を強いられる試験では顕著です。そのようなミスはどうやっても防げないというひともいますが、それは間違いです。計算ミスを防ぐ方法はあります。
それは、繰り返し計算問題を解くだけです。何度も問題を解くと慣れてたとえ緊張しても正確に計算できるようになります。
単純な方法ですが、効果的です。ケアレスミスをなくすだけで数学の成績はあがるので、何度も繰り返し問題を解きましょう。
ちなみに、塾にて小テストで繰り返し同じような問題を解かせたときの経験ですが、生徒のケアレスミスをゼロにはできませんでした。ただ、繰り返し問題を解かせれば解かせるほど、計算ミスは減りました。やはり効果があるようです。
(1)答えは以下です。
\begin{eqnarray}-\frac{26496}{37}x^3y^5z\end{eqnarray}
(2)答えは以下です。
\begin{eqnarray}-\frac{16240}{341}x^3yz^2\end{eqnarray}
(3)答えは以下です。
\begin{eqnarray}-\frac{750}{217}x^2y^2z^3\end{eqnarray}
(4)答えは以下です。
\begin{eqnarray}-\frac{672}{41}x^3y^2z\end{eqnarray}
(5)答えは以下です。
\begin{eqnarray}-\frac{236800}{5829}x^3yz^3\end{eqnarray}
(6)答えは以下です。
\begin{eqnarray}\frac{4704}{115}x^3y^3z^3\end{eqnarray}
(7)答えは以下です。
\begin{eqnarray}\frac{51606}{13}xyz^4\end{eqnarray}
(8)答えは以下です。
\begin{eqnarray}\frac{448}{99}y^3z^4\end{eqnarray}
(9)答えは以下です。
\begin{eqnarray}-\frac{38}{9}x^2y^2z^3\end{eqnarray}
(10)答えは以下です。
\begin{eqnarray}-\frac{1924}{765}xyz^5\end{eqnarray}
(11)答えは以下です。
\begin{eqnarray}\frac{129920}{297}xy^4z^2\end{eqnarray}
(12)答えは以下です。
\begin{eqnarray}-\frac{5289}{2660}x^4y^2z\end{eqnarray}
(13)答えは以下です。
\begin{eqnarray}\frac{11732040}{1463}x^6yz^2\end{eqnarray}
(14)答えは以下です。
\begin{eqnarray}-\frac{170496}{25}x^3y^2z^3\end{eqnarray}
(15)答えは以下です。
\begin{eqnarray}\frac{385}{83}x^2y^3z^2\end{eqnarray}