式の展開1(変数1つ)の演習問題
こんにちは、『5つのパターンで9割わかる!中学数学の文章題』(総合科学出版)などの著書がある石崎です。
さて、数学は、実生活では役立たないと思っているひとも多いのではないでしょうか。
しかし、数学は案外実生活で役立ちます。数学の勉強をしっかりしておきましょう。具体的には、まずは基本を理解して、つぎに同じ問題を繰り返し解くことです。特に計算問題は繰り返し問題を解くことが大切です。というわけで、今日も、はりきって文字と式の計算を解きましょう。
計算問題を繰り返し解いて本当に数学が得意になるのかと考えるひともいるかもしれませんが、がんばって解いてみてください。そのうち、数学が苦手ではなくなっていると気がつくと思いますから。何度も式の展開の計算をしているとつらくなるかもしれませんが、それを乗り越えてくださいね。
<はじめてのひとへ>
・数式の表示は、MathJaxを利用しています。数式を表示させるにはネット接続とJavascriptを「オン」にすることが必要です。
・このページは印刷できます。詳しい方法は、計算問題を印刷する方法をご覧になってください。
・計算のしかたを工夫すれば楽に計算できるケースもあります。計算式はあくまで目安ですので、あらかじめご了承ください。
・計算問題のページには、ほかにも、たくさん計算問題があります。
<出題内容>
・対象:中学一年生(中学数学)
・種類:式の展開1(変数1つ)
・問題数:15問
スポンサード リンク
式の展開1(変数1つ)(問題)
(1)つぎの式を計算してください。
\begin{eqnarray}-7(-4a-8)-9(-9a\end{eqnarray}\begin{eqnarray}-1)=
\end{eqnarray}
(2)つぎの式を計算してください。
\begin{eqnarray}2(4a-3)-8(-7a-8)=
\end{eqnarray}
(3)つぎの式を計算してください。
\begin{eqnarray}-3(-6a+5)-4(-5a\end{eqnarray}\begin{eqnarray}+3)=
\end{eqnarray}
(4)つぎの式を計算してください。
\begin{eqnarray}-3(-5a+1)+8(-3a\end{eqnarray}\begin{eqnarray}+1)=
\end{eqnarray}
(5)つぎの式を計算してください。
\begin{eqnarray}-5(-3a-6)+6(-2a\end{eqnarray}\begin{eqnarray}-2)=
\end{eqnarray}
(6)つぎの式を計算してください。
\begin{eqnarray}-4(-5a-3)-6(-5a\end{eqnarray}\begin{eqnarray}-8)=
\end{eqnarray}
(7)つぎの式を計算してください。
\begin{eqnarray}-9(2a-8)-4(-4a-3)=
\end{eqnarray}
(8)つぎの式を計算してください。
\begin{eqnarray}-9(9a+1)-7(6a-7)=
\end{eqnarray}
(9)つぎの式を計算してください。
\begin{eqnarray}-7(6a-8)+5(3a-1)=
\end{eqnarray}
(10)つぎの式を計算してください。
\begin{eqnarray}5(-9a+3)+( -a+2)=
\end{eqnarray}
(11)つぎの式を計算してください。
\begin{eqnarray}-6( - a+1)+4(4a-2)=
\end{eqnarray}
(12)つぎの式を計算してください。
\begin{eqnarray}- (-2a-7)-7(7a-9)=
\end{eqnarray}
(13)つぎの式を計算してください。
\begin{eqnarray}6(-5a-7)-3(2a-2)=
\end{eqnarray}
(14)つぎの式を計算してください。
\begin{eqnarray}- (-9a-8)-8(-2a\end{eqnarray}\begin{eqnarray}-1)=
\end{eqnarray}
(15)つぎの式を計算してください。
\begin{eqnarray}- (-7a-4)-9(-8a\end{eqnarray}\begin{eqnarray}-6)=
\end{eqnarray}
式の展開1(変数1つ)(計算式)
(1)つぎのように計算できます。
\begin{eqnarray}(-7)*(-4)a-(-7)*(-8)\end{eqnarray}\begin{eqnarray}+(-9)*(-9)a-(-9)*1\end{eqnarray}
さらに計算すると、つぎになります。あとは、同類項でまとめます。
\begin{eqnarray}28a-56+81a+9\end{eqnarray}
(2)つぎのように計算できます。
\begin{eqnarray}2*4a-2*3+(-8)*(-7)a-(\end{eqnarray}\begin{eqnarray}-8)*8\end{eqnarray}
さらに計算すると、つぎになります。あとは、同類項でまとめます。
\begin{eqnarray}8a-6+56a+64\end{eqnarray}
(3)つぎのように計算できます。
\begin{eqnarray}(-3)*(-6)a+(-3)*5+(\end{eqnarray}\begin{eqnarray}-4)*(-5)a+(-4)*3\end{eqnarray}
さらに計算すると、つぎになります。あとは、同類項でまとめます。
\begin{eqnarray}18a-15+20a-12\end{eqnarray}
(4)つぎのように計算できます。
\begin{eqnarray}(-3)*(-5)a+(-3)*1+8*(\end{eqnarray}\begin{eqnarray}-3)a+8*1\end{eqnarray}
さらに計算すると、つぎになります。あとは、同類項でまとめます。
\begin{eqnarray}15a-3-24a+8\end{eqnarray}
(5)つぎのように計算できます。
\begin{eqnarray}(-5)*(-3)a-(-5)*6+6*(\end{eqnarray}\begin{eqnarray}-2)a+6*(-2)\end{eqnarray}
さらに計算すると、つぎになります。あとは、同類項でまとめます。
\begin{eqnarray}15a+30-12a-12\end{eqnarray}
(6)つぎのように計算できます。
\begin{eqnarray}(-4)*(-5)a-(-4)*3+(\end{eqnarray}\begin{eqnarray}-6)*(-5)a-(-6)*8\end{eqnarray}
さらに計算すると、つぎになります。あとは、同類項でまとめます。
\begin{eqnarray}20a+12+30a+48\end{eqnarray}
(7)つぎのように計算できます。
\begin{eqnarray}(-9)*2a+(-9)*(-8)+(\end{eqnarray}\begin{eqnarray}-4)*(-4)a-(-4)*(-3)\end{eqnarray}
さらに計算すると、つぎになります。あとは、同類項でまとめます。
\begin{eqnarray}-18a+72+16a-12\end{eqnarray}
(8)つぎのように計算できます。
\begin{eqnarray}(-9)*9a+(-9)*1+(-7)*6a\end{eqnarray}\begin{eqnarray}-(-7)*7\end{eqnarray}
さらに計算すると、つぎになります。あとは、同類項でまとめます。
\begin{eqnarray}-81a-9-42a+49\end{eqnarray}
(9)つぎのように計算できます。
\begin{eqnarray}(-7)*6a+(-7)*(-8)+5*3a\end{eqnarray}\begin{eqnarray}-5*(-1)\end{eqnarray}
さらに計算すると、つぎになります。あとは、同類項でまとめます。
\begin{eqnarray}-42a+56+15a+5\end{eqnarray}
(10)つぎのように計算できます。
\begin{eqnarray}5*(-9)a+5*3+1*(-1)a+1*2\end{eqnarray}
さらに計算すると、つぎになります。あとは、同類項でまとめます。
\begin{eqnarray}-45a+15-1a+2\end{eqnarray}
(11)つぎのように計算できます。
\begin{eqnarray}(-6)*(-1)a+(-6)*1+4*4a\end{eqnarray}\begin{eqnarray}-4*2\end{eqnarray}
さらに計算すると、つぎになります。あとは、同類項でまとめます。
\begin{eqnarray}6a-6+16a-8\end{eqnarray}
(12)つぎのように計算できます。
\begin{eqnarray}(-1)*(-2)a-(-1)*7+(\end{eqnarray}\begin{eqnarray}-7)*7a-(-7)*9\end{eqnarray}
さらに計算すると、つぎになります。あとは、同類項でまとめます。
\begin{eqnarray}2a+7-49a+63\end{eqnarray}
(13)つぎのように計算できます。
\begin{eqnarray}6*(-5)a-6*7+(-3)*2a-(\end{eqnarray}\begin{eqnarray}-3)*(-2)\end{eqnarray}
さらに計算すると、つぎになります。あとは、同類項でまとめます。
\begin{eqnarray}-30a-42-6a-6\end{eqnarray}
(14)つぎのように計算できます。
\begin{eqnarray}(-1)*(-9)a+(-1)*(-8)\end{eqnarray}\begin{eqnarray}+(-8)*(-2)a-(-8)*(-1)\end{eqnarray}\begin{eqnarray}\end{eqnarray}
さらに計算すると、つぎになります。あとは、同類項でまとめます。
\begin{eqnarray}9a+8+16a-8\end{eqnarray}
(15)つぎのように計算できます。
\begin{eqnarray}(-1)*(-7)a-(-1)*(-4)\end{eqnarray}\begin{eqnarray}+(-9)*(-8)a+(-9)*(-6)\end{eqnarray}\begin{eqnarray}\end{eqnarray}
さらに計算すると、つぎになります。あとは、同類項でまとめます。
\begin{eqnarray}7a-4+72a+54\end{eqnarray}
式の展開1(変数1つ)(解答)
勉強のコツはシンプルです。まずはしっかり参考書を読んで理解しましょう。数学に苦手意識があるひとには、わかりやすいテキストや参考書がお勧めです。
つぎに練習問題を解きます。数学が得意なひとほど良問を解くといいといいますが、苦手なひとは同じような問題でも数字が変わるとわからなくなるなどがあるため、お勧めしません。そこで、数値だけ変えた練習問題を解いていくといいでしょう。そのような練習問題があるのが、まさしくこのウェブサイトです。
(1)答えはつぎのようになります。
\begin{eqnarray}109a-65\end{eqnarray}
(2)答えはつぎのようになります。
\begin{eqnarray}64a-70\end{eqnarray}
(3)答えはつぎのようになります。
\begin{eqnarray}38a-27\end{eqnarray}
(4)答えはつぎのようになります。
\begin{eqnarray}-9a+5\end{eqnarray}
(5)答えはつぎのようになります。
\begin{eqnarray}3a-42\end{eqnarray}
(6)答えはつぎのようになります。
\begin{eqnarray}50a-60\end{eqnarray}
(7)答えはつぎのようになります。
\begin{eqnarray}-2a+60\end{eqnarray}
(8)答えはつぎのようになります。
\begin{eqnarray}-123a-58\end{eqnarray}
(9)答えはつぎのようになります。
\begin{eqnarray}-27a+51\end{eqnarray}
(10)答えはつぎのようになります。
\begin{eqnarray}-46a+17\end{eqnarray}
(11)答えはつぎのようになります。
\begin{eqnarray}22a-14\end{eqnarray}
(12)答えはつぎのようになります。
\begin{eqnarray}-47a-70\end{eqnarray}
(13)答えはつぎのようになります。
\begin{eqnarray}-36a-48\end{eqnarray}
(14)答えはつぎのようになります。
\begin{eqnarray}25a\end{eqnarray}
(15)答えはつぎのようになります。
\begin{eqnarray}79a+50\end{eqnarray}