【中学数学】単項式×多項式の式の展開2の演習問題 No.32

こんにちは、『0からやりなおす中学数学の計算問題』『5つのパターンで9割わかる!中学数学の文章題』(総合科学出版)などの著書がある石崎です。
いきなりですが、苦手な算数や数学をどうすれば得意にすることができると思いますか。
数学の成績は計算力で決まるといっても過言ではありません。正確に計算できるようになるまで、ひたすら計算問題を解きましょう。計算力をつけるには反復練習あるのみですから。
というわけで、今日も、式の展開の計算問題を解きましょう。このサイトには分数をはじめとして計算問題がたくさんありますよ。
数字を見るとウッときて、つらいかもしれませんが、今だけなので、がんばりましょう。そのうち、計算が趣味になる日がくるかもしれませんから。

<はじめてのひとへ>
・数式の表示は、MathJaxを利用しています。数式を表示させるにはネット接続とJavascriptを「オン」にすることが必要です。
・このページは印刷できます。詳しい方法は、計算問題を印刷する方法をご覧になってください。
・計算のしかたを工夫すれば楽に計算できるケースもあります。計算式はあくまで目安ですので、あらかじめご了承ください。
計算問題のページには、ほかにも、たくさん計算問題があります。

<出題内容>
・対象:中学二年生(中学数学)
・種類:式の展開
・式の形:単項式×多項式、多項式は2項
・変数:変数は2文字
・定数項:定数項なし
・乗数:乗数なし
・問題数:15問

スポンサード リンク


単項式×多項式の式の展開2の問題

(1)つぎの式の展開をしてください。

\[\frac{1}{3}x(-\frac{9}{8}x-y)\]

(2)つぎの式の展開をしてください。

\[(-5a)(9a-9b)\]

(3)つぎの式の展開をしてください。

\[(-x)(-9x+8y)\]

(4)つぎの式の展開をしてください。

\[(-\frac{1}{9}x)(2x+7y)\]

(5)つぎの式の展開をしてください。

\[(-\frac{9}{2}a)(\frac{3}{2}a-\frac{3}{4}b)\]

(6)つぎの式の展開をしてください。

\[(-\frac{2}{3}x)(4x-9y)\]

(7)つぎの式の展開をしてください。

\[(-7x)(2x-5y)\]

(8)つぎの式の展開をしてください。

\[(-8x)(-\frac{7}{3}x+4y)\]

(9)つぎの式の展開をしてください。

\[3x(2x+y)\]

(10)つぎの式の展開をしてください。

\[(-x)(-\frac{2}{7}x-4y)\]

(11)つぎの式の展開をしてください。

\[(-5x)(6x+2y)\]

(12)つぎの式の展開をしてください。

\[a(-\frac{1}{4}a+\frac{2}{5}b)\]

(13)つぎの式の展開をしてください。

\[3a(-2a-\frac{3}{7}b)\]

(14)つぎの式の展開をしてください。

\[(-\frac{5}{3}x)(-6x+\frac{7}{9}y)\]

(15)つぎの式の展開をしてください。

\[(-2a)(\frac{7}{8}a+\frac{7}{9}b)\]

単項式×多項式の式の展開2の問題(計算式)

(1)つぎのように計算できます。

\[\frac{1}{3}x×(-\frac{9}{8}x)+\frac{1}{3}x×(-y)\]
(2)つぎのように計算できます。

\[(-5a)×9a+(-5a)×(-9b)\]
(3)つぎのように計算できます。

\[(-x)×(-9x)+(-x)×8y\]
(4)つぎのように計算できます。

\[(-\frac{1}{9}x)×2x+(-\frac{1}{9}x)×7y\]
(5)つぎのように計算できます。

\[(-\frac{9}{2}a)×\frac{3}{2}a+(-\frac{9}{2}a)×(-\frac{3}{4}b)\]
(6)つぎのように計算できます。

\[(-\frac{2}{3}x)×4x+(-\frac{2}{3}x)×(-9y)\]
(7)つぎのように計算できます。

\[(-7x)×2x+(-7x)×(-5y)\]
(8)つぎのように計算できます。

\[(-8x)×(-\frac{7}{3}x)+(-8x)×4y\]
(9)つぎのように計算できます。

\[3x×2x+3x×y\]
(10)つぎのように計算できます。

\[(-x)×(-\frac{2}{7}x)+(-x)×(-4y)\]
(11)つぎのように計算できます。

\[(-5x)×6x+(-5x)×2y\]
(12)つぎのように計算できます。

\[a×(-\frac{1}{4}a)+a×\frac{2}{5}b\]
(13)つぎのように計算できます。

\[3a×(-2a)+3a×(-\frac{3}{7}b)\]
(14)つぎのように計算できます。

\[(-\frac{5}{3}x)×(-6x)+(-\frac{5}{3}x)×\frac{7}{9}y\]
(15)つぎのように計算できます。

\[(-2a)×\frac{7}{8}a+(-2a)×\frac{7}{9}b\]

単項式×多項式の式の展開2の問題(解答)

人は誰しもケアレスミスなどの計算ミスをするものです。特に緊張を強いられる試験では顕著です。そのようなミスはどうやっても防げないというひともいますが、それは間違いです。計算ミスを防ぐ方法はあります。
それは、繰り返し計算問題を解くだけです。何度も問題を解くと、たとえ緊張しても正確に計算できるようになります。
シンプルな方法ですが、効果的です。計算ミスをなくすだけで数学の成績はあがるので、何度も繰り返し問題を解きましょう。

(1)答えはつぎのようになります。

\[-\frac{3}{8}x^{2}-\frac{1}{3}xy\]

(2)答えはつぎのようになります。

\[-45a^{2}+45ab\]

(3)答えはつぎのようになります。

\[9x^{2}-8xy\]

(4)答えはつぎのようになります。

\[-\frac{2}{9}x^{2}-\frac{7}{9}xy\]

(5)答えはつぎのようになります。

\[-\frac{27}{4}a^{2}+\frac{27}{8}ab\]

(6)答えはつぎのようになります。

\[-\frac{8}{3}x^{2}+6xy\]

(7)答えはつぎのようになります。

\[-14x^{2}+35xy\]

(8)答えはつぎのようになります。

\[\frac{56}{3}x^{2}-32xy\]

(9)答えはつぎのようになります。

\[6x^{2}+3xy\]

(10)答えはつぎのようになります。

\[\frac{2}{7}x^{2}+4xy\]

(11)答えはつぎのようになります。

\[-30x^{2}-10xy\]

(12)答えはつぎのようになります。

\[-\frac{1}{4}a^{2}+\frac{2}{5}ab\]

(13)答えはつぎのようになります。

\[-6a^{2}-\frac{9}{7}ab\]

(14)答えはつぎのようになります。

\[10x^{2}-\frac{35}{27}xy\]

(15)答えはつぎのようになります。

\[-\frac{7}{4}a^{2}-\frac{14}{9}ab\]

「数学を勉強するすべての人へ」のトップページ