【中学数学】公式3を使って式を展開する問題(変数:2) No.52

こんにちは、石崎です。『0からやりなおす中学数学の計算問題』『5つのパターンで9割わかる!中学数学の文章題』(総合科学出版)などの著者です。案外、著書があります。
さて、算数や数学を得意科目にするためには、どうすればいいと思いますか。
まずは基本を理解する、そのつぎにひたすら計算問題を解いて正確に計算できるようになることです。実は、みなさんが、ひらすら計算問題を解けるようにこのページがあります。
というわけで、今回も、はりきって式の展開の計算問題を解きましょう。
数字を見るとウッときてつらいかもしれませんが、がんばりましょう。そのうち、計算するのが楽しくなるかもしれませんから。

<はじめてのひとへ>
・数式の表示は、MathJaxを利用しています。数式を表示させるにはネット接続とJavascriptを「オン」にすることが必要です。
・このページは印刷できます。詳しい方法は、計算問題を印刷する方法をご覧になってください。
・計算のしかたを工夫すれば楽に計算できるケースもあります。計算式はあくまで目安ですので、あらかじめご了承ください。
計算問題のページには、ほかにも、たくさん計算問題があります。

<出題内容>
・対象:中学三年生(中学数学)
・種類:式の展開(公式3を使って式を展開する問題)
・変数:2
・問題数:15問
※公式3
\[(x-y)^2=x^2-2xy+y^2\]

スポンサード リンク


公式3を利用して式を展開する問題

(1)展開してください(公式に当てはめると展開できます)。

\[(9a-7b)^2\]

(2)展開してください(公式に当てはめると展開できます)。

\[(2a-3b)^2\]

(3)展開してください(公式に当てはめると展開できます)。

\[(8a-b)^2\]

(4)展開してください(公式に当てはめると展開できます)。

\[(2x-3y)^2\]

(5)展開してください(公式に当てはめると展開できます)。

\[(3x-4y)^2\]

(6)展開してください(公式に当てはめると展開できます)。

\[(x-3y)^2\]

(7)展開してください(公式に当てはめると展開できます)。

\[(2x-y)^2\]

(8)展開してください(公式に当てはめると展開できます)。

\[(5a-9b)^2\]

(9)展開してください(公式に当てはめると展開できます)。

\[(x-5y)^2\]

(10)展開してください(公式に当てはめると展開できます)。

\[(6x-7y)^2\]

(11)展開してください(公式に当てはめると展開できます)。

\[(x-2y)^2\]

(12)展開してください(公式に当てはめると展開できます)。

\[(8a-5b)^2\]

(13)展開してください(公式に当てはめると展開できます)。

\[(4x-y)^2\]

(14)展開してください(公式に当てはめると展開できます)。

\[(2a-9b)^2\]

(15)展開してください(公式に当てはめると展開できます)。

\[(x-8y)^2\]

公式3を利用して式を展開する問題(計算式)

(1)つぎのように変形できます。

\[(9a)^2-2×9a×7b+(7b)^2\]
(2)つぎのように変形できます。

\[(2a)^2-2×2a×3b+(3b)^2\]
(3)つぎのように変形できます。

\[(8a)^2-2×8a×b+(b)^2\]
(4)つぎのように変形できます。

\[(2x)^2-2×2x×3y+(3y)^2\]
(5)つぎのように変形できます。

\[(3x)^2-2×3x×4y+(4y)^2\]
(6)つぎのように変形できます。

\[(x)^2-2×x×3y+(3y)^2\]
(7)つぎのように変形できます。

\[(2x)^2-2×2x×y+(y)^2\]
(8)つぎのように変形できます。

\[(5a)^2-2×5a×9b+(9b)^2\]
(9)つぎのように変形できます。

\[(x)^2-2×x×5y+(5y)^2\]
(10)つぎのように変形できます。

\[(6x)^2-2×6x×7y+(7y)^2\]
(11)つぎのように変形できます。

\[(x)^2-2×x×2y+(2y)^2\]
(12)つぎのように変形できます。

\[(8a)^2-2×8a×5b+(5b)^2\]
(13)つぎのように変形できます。

\[(4x)^2-2×4x×y+(y)^2\]
(14)つぎのように変形できます。

\[(2a)^2-2×2a×9b+(9b)^2\]
(15)つぎのように変形できます。

\[(x)^2-2×x×8y+(8y)^2\]

公式3を利用して式を展開する問題(解答)

数学は積み重ねです。どのテーマもしっかり勉強しましょう。具体的には、しっかり理解したあと、全問正解できるように、演習問題を繰り返し解きましょう。
ただ解きっぱなしはよくありません。なぜ間違えたのかをしっかり理解しましょう。そうしないといつも同じところで間違えてしまいます。

(1)答えはつぎのようになります。

\[81a^2-126ab+49b^2\]

(2)答えはつぎのようになります。

\[4a^2-12ab+9b^2\]

(3)答えはつぎのようになります。

\[64a^2-16ab+b^2\]

(4)答えはつぎのようになります。

\[4x^2-12xy+9y^2\]

(5)答えはつぎのようになります。

\[9x^2-24xy+16y^2\]

(6)答えはつぎのようになります。

\[x^2-6xy+9y^2\]

(7)答えはつぎのようになります。

\[4x^2-4xy+y^2\]

(8)答えはつぎのようになります。

\[25a^2-90ab+81b^2\]

(9)答えはつぎのようになります。

\[x^2-10xy+25y^2\]

(10)答えはつぎのようになります。

\[36x^2-84xy+49y^2\]

(11)答えはつぎのようになります。

\[x^2-4xy+4y^2\]

(12)答えはつぎのようになります。

\[64a^2-80ab+25b^2\]

(13)答えはつぎのようになります。

\[16x^2-8xy+y^2\]

(14)答えはつぎのようになります。

\[4a^2-36ab+81b^2\]

(15)答えはつぎのようになります。

\[x^2-16xy+64y^2\]

「数学を勉強するすべての人へ」のトップページ