【中学数学】公式3を使って式を展開する問題(変数:2) No.75
こんにちは、『0からやりなおす中学数学の計算問題』(総合科学出版)などの著書がある石崎です。ほかにも、さまざまなジャンルの著書があります。
いきなりですが、どうすれば算数や数学が得意になると思いますか。
数学の成績は計算力で決まるといっても過言ではありません。正確に計算できるようになるまで、ひたすら計算問題を解きましょう。計算力をつけるには反復練習あるのみですから。。
というわけで、今回も、地道に式の展開の計算問題を解きましょう。
たし算とひき算の計算は単調でつらいでしょうが、今だけなので、がんばりましょう。
そのうち、式の展開の計算をするのが楽しくなる日がくるかもしれませんから。
<はじめてのひとへ>
・数式の表示は、MathJaxを利用しています。数式を表示させるにはネット接続とJavascriptを「オン」にすることが必要です。
・このページは印刷できます。詳しい方法は、計算問題を印刷する方法をご覧になってください。
・計算のしかたを工夫すれば楽に計算できるケースもあります。計算式はあくまで目安ですので、あらかじめご了承ください。
・計算問題のページには、ほかにも、たくさん計算問題があります。
<出題内容>
・対象:中学三年生(中学数学)
・種類:式の展開(公式3を使って式を展開する問題)
・変数:2
・問題数:15問
※公式3
\[(x-y)^2=x^2-2xy+y^2\]
スポンサード リンク
公式3を利用して式を展開する問題
(1)展開してください。先に公式を利用して()をはずすといいですよ。
\[3(x-2y)^2\]
(2)展開してください。先に公式を利用して()をはずすといいですよ。
\[2(4a-7b)^2\]
(3)展開してください。先に公式を利用して()をはずすといいですよ。
\[3(3a-4b)^2\]
(4)展開してください。先に公式を利用して()をはずすといいですよ。
\[4(4a-9b)^2\]
(5)展開してください。先に公式を利用して()をはずすといいですよ。
\[4(9x-2y)^2\]
(6)展開してください。先に公式を利用して()をはずすといいですよ。
\[2(a-8b)^2\]
(7)展開してください。先に公式を利用して()をはずすといいですよ。
\[3(5a-3b)^2\]
(8)展開してください。先に公式を利用して()をはずすといいですよ。
\[4(9x-8y)^2\]
(9)展開してください。先に公式を利用して()をはずすといいですよ。
\[2(7a-8b)^2\]
(10)展開してください。先に公式を利用して()をはずすといいですよ。
\[2(a-4b)^2\]
(11)展開してください。先に公式を利用して()をはずすといいですよ。
\[3(2x-y)^2\]
(12)展開してください。先に公式を利用して()をはずすといいですよ。
\[2(4a-7b)^2\]
(13)展開してください。先に公式を利用して()をはずすといいですよ。
\[3(3x-4y)^2\]
(14)展開してください。先に公式を利用して()をはずすといいですよ。
\[2(9a-4b)^2\]
(15)展開してください。先に公式を利用して()をはずすといいですよ。
\[4(3a-2b)^2\]
公式3を利用して式を展開する問題(計算式)
(1)つぎのように変形できます。
\[3\{(x)^2-2×x×2y+(2y)^2\}\]
\[3(x^2-4xy+4y^2)\]
(2)つぎのように変形できます。
\[2\{(4a)^2-2×4a×7b+(7b)^2\}\]
\[2(16a^2-56ab+49b^2)\]
(3)つぎのように変形できます。
\[3\{(3a)^2-2×3a×4b+(4b)^2\}\]
\[3(9a^2-24ab+16b^2)\]
(4)つぎのように変形できます。
\[4\{(4a)^2-2×4a×9b+(9b)^2\}\]
\[4(16a^2-72ab+81b^2)\]
(5)つぎのように変形できます。
\[4\{(9x)^2-2×9x×2y+(2y)^2\}\]
\[4(81x^2-36xy+4y^2)\]
(6)つぎのように変形できます。
\[2\{(a)^2-2×a×8b+(8b)^2\}\]
\[2(a^2-16ab+64b^2)\]
(7)つぎのように変形できます。
\[3\{(5a)^2-2×5a×3b+(3b)^2\}\]
\[3(25a^2-30ab+9b^2)\]
(8)つぎのように変形できます。
\[4\{(9x)^2-2×9x×8y+(8y)^2\}\]
\[4(81x^2-144xy+64y^2)\]
(9)つぎのように変形できます。
\[2\{(7a)^2-2×7a×8b+(8b)^2\}\]
\[2(49a^2-112ab+64b^2)\]
(10)つぎのように変形できます。
\[2\{(a)^2-2×a×4b+(4b)^2\}\]
\[2(a^2-8ab+16b^2)\]
(11)つぎのように変形できます。
\[3\{(2x)^2-2×2x×y+(y)^2\}\]
\[3(4x^2-4xy+y^2)\]
(12)つぎのように変形できます。
\[2\{(4a)^2-2×4a×7b+(7b)^2\}\]
\[2(16a^2-56ab+49b^2)\]
(13)つぎのように変形できます。
\[3\{(3x)^2-2×3x×4y+(4y)^2\}\]
\[3(9x^2-24xy+16y^2)\]
(14)つぎのように変形できます。
\[2\{(9a)^2-2×9a×4b+(4b)^2\}\]
\[2(81a^2-72ab+16b^2)\]
(15)つぎのように変形できます。
\[4\{(3a)^2-2×3a×2b+(2b)^2\}\]
\[4(9a^2-12ab+4b^2)\]
公式3を利用して式を展開する問題(解答)
人は誰しもケアレスミスなどの計算ミスをするものです。特に緊張を強いられる試験では顕著です。そのようなミスはどうやっても防げないというひともいますが、それは間違いです。計算ミスを防ぐ方法はあります。
それは、繰り返し計算問題を解くだけです。何度も問題を解くと、たとえ緊張しても正確に計算できるようになります。
単純な方法ですが、効果的です。ケアレスミスをなくすだけで数学の成績はあがるので、何度も繰り返し問題を解きましょう。
(1)答えはつぎのようになります。
\[3x^2-12xy+12y^2\]
(2)答えはつぎのようになります。
\[32a^2-112ab+98b^2\]
(3)答えはつぎのようになります。
\[27a^2-72ab+48b^2\]
(4)答えはつぎのようになります。
\[64a^2-288ab+324b^2\]
(5)答えはつぎのようになります。
\[324x^2-144xy+16y^2\]
(6)答えはつぎのようになります。
\[2a^2-32ab+128b^2\]
(7)答えはつぎのようになります。
\[75a^2-90ab+27b^2\]
(8)答えはつぎのようになります。
\[324x^2-576xy+256y^2\]
(9)答えはつぎのようになります。
\[98a^2-224ab+128b^2\]
(10)答えはつぎのようになります。
\[2a^2-16ab+32b^2\]
(11)答えはつぎのようになります。
\[12x^2-12xy+3y^2\]
(12)答えはつぎのようになります。
\[32a^2-112ab+98b^2\]
(13)答えはつぎのようになります。
\[27x^2-72xy+48y^2\]
(14)答えはつぎのようになります。
\[162a^2-144ab+32b^2\]
(15)答えはつぎのようになります。
\[36a^2-48ab+16b^2\]