【中学数学】公式を使って式の展開をする問題 No.51
こんにちは、石崎です。『0からやりなおす中学数学の計算問題』(総合科学出版)などの著者です。『基本にカエル英語の本』という著書もあります。
さて、「算数や数学が大の苦手」から脱却するには、どうすればいいと思いますか。
そのためには基本をおさえてから、反復練習あるのみです。反復練習のためにこのページはあります。というわけで、地道に式の展開の計算問題を解きましょう。
<はじめてのひとへ>
・数式の表示は、MathJaxを利用しています。数式を表示させるにはネット接続とJavascriptを「オン」にすることが必要です。
・このページは印刷できます。詳しい方法は、計算問題を印刷する方法をご覧になってください。
・計算のしかたを工夫すれば楽に計算できるケースもあります。計算式はあくまで目安ですので、あらかじめご了承ください。
・計算問題のページには、ほかにも、たくさん計算問題があります。
<出題内容>
・対象:中学三年生(中学数学)
・種類:式の展開(公式を使って式の展開をする問題)
・問題数:20問
※公式
\[(x+y)(x-y)=x^2-y^2\]\[(x+y)^2=x^2+2xy+y^2\]\[(x-y)^2=x^2-2xy+y^2\]\[(x+a)(x+b)=x^2+(a+b)x+ab\]\[(x+ay)(x+by)=x^2+(a+b)xy+aby^2\]
スポンサード リンク
公式を利用して式の展開をする問題
(1)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[2z(7x+5)^2\]
(2)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[3(x+2y)(x-2y)\]
(3)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[2(9x+4y)^2\]
(4)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[3(x+2y)^2\]
(5)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[4(4a-3b)^2\]
(6)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[4z(x+4y)(x-4y)\]
(7)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[4(x+2)(x-2)\]
(8)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[3c(a-b)^2\]
(9)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[4(a+b)^2\]
(10)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[2c(a+b)(a-b)\]
(11)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[2(a+9)(a+2)\]
(12)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[3z(x+5)(x-5)\]
(13)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[2(3x-1)^2\]
(14)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[3(3a+2)(3a-2)\]
(15)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[4z(5x+3y)(5x-3y)\]
(16)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[3c(a+3)(a-3)\]
(17)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[2(a-5b)^2\]
(18)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[3c(a-b)^2\]
(19)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[2(a-7b)^2\]
(20)展開してください。なお、公式を利用しなくても展開できますが、今後勉強する因数分解では公式を覚えておかないと話にならないので、覚えられるように公式で展開しましょう。
\[3(7a-8b)^2\]
公式を利用して式の展開をする問題(計算式)
(1)公式で( )を展開すると、つぎのようになります。
\[2z\{(7x)^2+2×7x×5+(5)^2\}\]
整理すると、つぎのようになります。
\[2z(49x^2+70x+25)\]
(2)公式で( )を展開すると、つぎのようになります。
\[3\{(x)^2-(2y)^2\}\]
整理すると、つぎのようになります。
\[3(x^2-4y^2)\]
(3)公式で( )を展開すると、つぎのようになります。
\[2\{(9x)^2+2×9x×4y+(4y)^2\}\]
整理すると、つぎのようになります。
\[2(81x^2+72xy+16y^2)\]
(4)公式で( )を展開すると、つぎのようになります。
\[3\{(x)^2+2×x×2y+(2y)^2\}\]
整理すると、つぎのようになります。
\[3(x^2+4xy+4y^2)\]
(5)公式で( )を展開すると、つぎのようになります。
\[4\{(4a)^2-2×4a×3b+(3b)^2\}\]
整理すると、つぎのようになります。
\[4(16a^2-24ab+9b^2)\]
(6)公式で( )を展開すると、つぎのようになります。
\[4z\{(x)^2-(4y)^2\}\]
整理すると、つぎのようになります。
\[4z(x^2-16y^2)\]
(7)公式で( )を展開すると、つぎのようになります。
\[4\{(x)^2-(2)^2\}\]
整理すると、つぎのようになります。
\[4(x^2-4)\]
(8)公式で( )を展開すると、つぎのようになります。
\[3c\{(a)^2-2×a×b+(b)^2\}\]
整理すると、つぎのようになります。
\[3c(a^2-2ab+b^2)\]
(9)公式で( )を展開すると、つぎのようになります。
\[4\{(a)^2+2×a×b+(b)^2\}\]
整理すると、つぎのようになります。
\[4(a^2+2ab+b^2)\]
(10)公式で( )を展開すると、つぎのようになります。
\[2c\{(a)^2-(b)^2\}\]
整理すると、つぎのようになります。
\[2c(a^2-b^2)\]
(11)公式で( )を展開すると、つぎのようになります。
\[2\{a^2+(9+2)a+9×2\}\]
整理すると、つぎのようになります。
\[2(a^2+11a+18)\]
(12)公式で( )を展開すると、つぎのようになります。
\[3z\{(x)^2-(5)^2\}\]
整理すると、つぎのようになります。
\[3z(x^2-25)\]
(13)公式で( )を展開すると、つぎのようになります。
\[2\{(3x)^2-2×3x×1+(1)^2\}\]
整理すると、つぎのようになります。
\[2(9x^2-6x+1)\]
(14)公式で( )を展開すると、つぎのようになります。
\[3\{(3a)^2-(2)^2\}\]
整理すると、つぎのようになります。
\[3(9a^2-4)\]
(15)公式で( )を展開すると、つぎのようになります。
\[4z\{(5x)^2-(3y)^2\}\]
整理すると、つぎのようになります。
\[4z(25x^2-9y^2)\]
(16)公式で( )を展開すると、つぎのようになります。
\[3c\{(a)^2-(3)^2\}\]
整理すると、つぎのようになります。
\[3c(a^2-9)\]
(17)公式で( )を展開すると、つぎのようになります。
\[2\{(a)^2-2×a×5b+(5b)^2\}\]
整理すると、つぎのようになります。
\[2(a^2-10ab+25b^2)\]
(18)公式で( )を展開すると、つぎのようになります。
\[3c\{(a)^2-2×a×b+(b)^2\}\]
整理すると、つぎのようになります。
\[3c(a^2-2ab+b^2)\]
(19)公式で( )を展開すると、つぎのようになります。
\[2\{(a)^2-2×a×7b+(7b)^2\}\]
整理すると、つぎのようになります。
\[2(a^2-14ab+49b^2)\]
(20)公式で( )を展開すると、つぎのようになります。
\[3\{(7a)^2-2×7a×8b+(8b)^2\}\]
整理すると、つぎのようになります。
\[3(49a^2-112ab+64b^2)\]
公式を利用して式の展開をする問題(解答)
人は誰しもケアレスミスなどの計算ミスをするものです。特に緊張を強いられる試験では顕著です。そのようなミスはどうやっても防げないというひともいますが、それは間違いです。計算ミスを防ぐ方法はあります。
それは、繰り返し計算問題を解くだけです。何度も問題を解くと慣れてたとえ緊張しても正確に計算できるようになります。
シンプルな方法ですが、効果的です。地道でつらい作業ですが、何度も繰り返し問題を解きましょう。
(1)答えはつぎのようになります。
\[98x^2z+140xz+50z\]
(2)答えはつぎのようになります。
\[3x^2-12y^2\]
(3)答えはつぎのようになります。
\[162x^2+144xy+32y^2\]
(4)答えはつぎのようになります。
\[3x^2+12xy+12y^2\]
(5)答えはつぎのようになります。
\[64a^2-96ab+36b^2\]
(6)答えはつぎのようになります。
\[4x^2z-64y^2z\]
(7)答えはつぎのようになります。
\[4x^2-16\]
(8)答えはつぎのようになります。
\[3a^2c-6abc+3b^2c\]
(9)答えはつぎのようになります。
\[4a^2+8ab+4b^2\]
(10)答えはつぎのようになります。
\[2a^2c-2b^2c\]
(11)答えはつぎのようになります。
\[2a^2+22a+36\]
(12)答えはつぎのようになります。
\[3x^2z-75z\]
(13)答えはつぎのようになります。
\[18x^2-12x+2\]
(14)答えはつぎのようになります。
\[27a^2-12\]
(15)答えはつぎのようになります。
\[100x^2z-36y^2z\]
(16)答えはつぎのようになります。
\[3a^2c-27c\]
(17)答えはつぎのようになります。
\[2a^2-20ab+50b^2\]
(18)答えはつぎのようになります。
\[3a^2c-6abc+3b^2c\]
(19)答えはつぎのようになります。
\[2a^2-28ab+98b^2\]
(20)答えはつぎのようになります。
\[147a^2-336ab+192b^2\]